
A Method for Configuring Agents in Plug

& Produce Systems

Mattias Bennulf a,1, Fredrik Danielsson a and Bo Svensson a
a

 Department of Production Systems, University West, Trollhättan, Sweden

Abstract. Multi-agent technology, used for implementing Plug & Produce systems
have many proposed benefits for fast adaption of manufacturing systems. However,

still today multi-agent technology is not ready for the industry, due to the lack of

mature supporting tools and guidelines. The result is that today, multi-agent systems
are more complicated and time-consuming to use than traditional approaches. This

hides their true benefits. In this paper, a new method for configuring agents is
presented that includes automated deployment to manufacturing systems and by its

flexible design opens the possibility to connect many other supporting tools when

needed. A configuration tool is also designed that works with the proposed method
by connecting to an agent configuration database. The overall aim of the method is

to simplify the steps taken for adapting a manufacturing system for new parts and

resources.

Keywords. Plug & Produce, Configuration, Multi-Agent System, Deployment,

Industry 4.0

1. Introduction

For many years, the demand for low volume production and customization has

increased [1]. It is costly to rebuild a manufacturing system for each new type of part to

be produced, forcing many manufacturing processes to still be performed manually. The

reason that it is difficult to change automated manufacturing systems is that they usually

have rigid control solutions that are difficult to change, due to the lack of abstraction of

logic and encapsulation of code. Programming of a resource such as a robot takes up a

huge amount of time [2], limiting the possibilities to quickly add new product designs to

the system. Further, in traditional systems with central control, there typically exists

strong dependencies between resources. For example, it is not always easy to change the

code of one industrial robot without changing the code also in surrounding resources

such as a PLC or another robot. This makes it difficult to write the local code for one

resource without considering the specific manufacturing system where that resource is

to be used. This is a problem when implementing Plug & Produce systems, where

resources should be easy to connect/disconnect and even have the possibility to be moved

between different manufacturing areas or even plants.

Plug & Produce is a concept where resources are connected using standardized

hardware connectors and are automatically included in the manufacturing [3]. One

approach to implement the controller in a Plug & Produce system is to utilize multi-agent

technology that was described by Wooldridge et.al. [4]. Multi-agent systems simplify the

1 Corresponding Author. mattias.bennulf@hv.se

SPS2022
A.H.C. Ng et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE220133

135

design of manufacturing system controllers by encapsulating each resource logic in the

system. This is done by creating a separate agent (controller) for each resource and part

in the system. Each agent can communicate with each other to reach manufacturing goals

through a standardised communication interface. Hence, the agent for each resource is

independent of logic and signals of other resources and can act independently through

negotiation. This makes it possible to adapt to new types of parts and resources in

minutes rather than days or months as in conventional systems with hierarchical central

control. The reason that it is faster to adopt is that a resource such as an industrial robot

only needs to know its own skills, e.g., how to perform transportation of a robot tool.

While the tool, such as a robot gripper only need to know how to transport parts.

Dependencies between the robot and the tool, in this case, is only based on demands of

skills and are not hardcoded in the control logic itself. In this way, logic is completely

isolated into carefully defined resources with different skills and parts with

manufacturing goals. However, still today such a flexible system is not used in the

industry due to a lack of mature tools and platforms [5], [6]. Prototypes has been

developed but they are not used in large-scale production [7].

In existing multi-agent frameworks such as the Java Agent Development Framework

(JADE), each agent still has individual tailormade control code, that is manually written.

The idea is that the programmer writes the agent control code in such a way that the

agents automatically communicate and negotiate to make the dependencies between

them limited since they can find each other without for example mapping specific signals

to static addresses. This makes it easier to add new resources since they do not have

strong dependencies on surrounding resources. However, the control code still has to be

written manually to create or change the local behaviour of an agent.

To avoid programming of agents, one approach presented in [8] proposes to write

one single agent control code and then reuse the exact same agent code for all agents.

The unique and local behaviour of each agent is given through configurations. In contrast

to frameworks such as JADE, the one presented in [8] have predefined strategies for

negotiating and communicating among agents, making it easier to introduce new agents.

Our paper is a continuation of this agent framework presented in [8]. Hence, agents in

this paper are instantiated based on one single agent control code and are given individual

configuration data. The approach that one single agent code is developed and never

changed drastically limits the need for a deeper understanding of the internal control

logic since communication and negotiation are standardized and handled automatically

by the agents. However, this requires a standardized configuration ontology as well as a

special-purpose configuration tool that can be used to define the necessary configuration

data for each individual agent.

In this paper, such a tool for configuring agents is proposed and evaluated. This

paper also investigates how the configuration tool can include functionality for

automated deployment to physical manufacturing systems. Further, connections with

other supporting tools, such as extracting data from robotic simulations and product

designs are investigated.

2. Configurable Agents

As described earlier, one approach to implement a Plug & Produce system is to

create a multi-agent system, that consists of multiple agents that are communicating with

each other. This means that physical objects, such as resources and parts have a

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems136

corresponding agent (controller). If data should be synchronized between an agent and

its corresponding physical object, they should be connected. The separation of cyber and

physical components is identical to the concept of designing a Cyber-Physical System

such as the one presented in [9].

Using agents limits the direct communication between physical objects and instead

forces all resources to communicate through their agents using standardized

communication interfaces. This completely removes the need for defining specific

network details, such as addresses for communication between resources. Standards for

implementing agents exist today. Some of these standards are developed by the

Foundation for Intelligent Physical Agents (FIPA), which is an IEEE organization. They

specify an agent communication language, specified in the specification: FIPA Agent

Communication Language (ACL) [10]. Further, the FIPA Agent Management

Specification [11] describes the general guidelines on how to design an agent system. To

develop an agent system that follows FIPA it is common to use JADE. This is an agent

framework that implements the agent standards from FIPA. However, JADE and FIPA

are only considering agents in general, thus no information or supporting tools for the

manufacturing industry are included today. Configuration tools are not considered in

JADE, since the approach is mainly to design agents by manual coding in the JAVA

language.

There currently is a lack of standardized agent configuration formats since many

continue to write agent code manually. However, some initiatives exist, such as the one

presented in [8] that specifies that an agent’s configuration should consist of variables,

goals, skills, process plans, and interfaces. Further, the agent itself is defined and

specified as a part or a resource. This is shown in Figure. 1, which is based on the

ontology presented in [8].

Figure. 1. Agent classes for defining an agent configuration.

 In our method for configuring agents, these classes in Figure. 1 are used but

extended with more details such as using pre-conditions on goals. Each of the agent

classes is regarded as an entity that has a unique id, name, description, and type. The

detailed description of the configuration format that will be considered in the rest of this

paper is presented in the following sections:

Variable: A variable can be any data that is needed such as pick and place positions,

tool specifications such as weight, or the speed of a motor. It could also be more

advanced data such as a specific path for grinding with a robot. In that case, the path is

not configured for the robot but instead configured as a path locally defined on the part

agent.

Part

Skill

Variable

Process Plan

Goal

Has Has

Has

Need
Demands

Resource

Has

Agent

Interface

IsIs

Has

Has

Has Has

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 137

Goal: Parts have goals that define what should happen to the part in the

manufacturing system. A goal can for example be to drill a hole with a specific diameter

or to grind a part to get soft edges. Goals are described with pre-conditions and can run

in parallel if the pre-conditions allow this.
Skill: Resources in the system has skills that describe a specific capability. This can

for example be a skill to transport a part, paint a part with colour, or store a part in a

buffer. Skills are always defined on interfaces in order to organize them and ensure that

hardware and software compatibility is maintained between connected agents. Implying

that a skill can only be utilized by agents that have compatible interfaces.

Process Plan: A process plan defines how to solve a specific goal or to execute a

skill. It is described as a recipe with demanded resource skills without referring to

specific resources. The syntax is similar to a high-level programming language such as

Structured Text (ST). However, the idea here is to not include advanced logic but to keep

a strong abstraction from the details of the control logic. The process plans for goals

typically only have a sequence of skills defined, while the process plans for running a

skill includes skills as well as some local abilities such as setting a local variable to true.
Interface: An interface is a point of interaction between two agents and is used for

agents to find each other. The interfaces are searchable in the agent network and can be

used for collaboration. An interface could, for instance, act as the boundary between a

robot gripper and a robot. Both the gripper and the robot need interfaces that are

compatible in order to be connected. In that case, the robot presents on its interface, a

skill with the functionality to transport the gripper. In this way, the gripper would never

request to be attached to a resource that cannot transport or that is not physically

compatible with the gripper.

There are many approaches to format such configuration data explained above.

General data formats exist such as XML, JSON and AutomationML. Extensible Markup

Language (XML) is a data format that supports objects and lists. Similarly, JavaScript

Object Notation (JSON) can be used to structure the same data in a slightly different way.

AutomationML is a standardized storage format for manufacturing systems, that was

presented at the Hannover fair in 2008 [12]. It is based on XML and was designed to be

used with engineering tools for manufacturing systems. AutomationML uses the object-

oriented paradigm in order to describe plant components. It can store the plant topology,

geometry, kinematic, behaviour description and references/relations. For this paper,

JSON has been considered due to its multiple existing libraries for implementation with

several programming languages and platforms. JSON is a format that is also currently

implemented in various industrial devices, such as the “Robot Web Services” for ABB

industrial robots. It also tends to be more lightweight as a format than XML, due to less

overhead in its data structure. Because of this, it is a bit more difficult to read by humans

than XML. However, this should not be a problem since the aim of this paper is to use a

configuration tool instead of editing the data directly. Specifically, we have considered

JSON RPC, which is a remote procedure call protocol for sending JSON data between

different components in the system. Note that, since the configuration classes presented

earlier are used for the configurations the JSON format must be combined with these

configuration classes to work properly.

To work directly in text-based formats is time-consuming, complex and exposed to

syntax mistakes when manually creating and handling the configuration parameters.

General tools for editing these formats exist, such as the “AutomationML Editor”,

Microsoft’s “XML Notepad” and Altova’s “XMLSpy”, which can edit both XML and

JSON. The problem with these tools is that they do not consider the agent configuration

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems138

classes presented earlier in this paper. It is however possible to include them in such tools

as a class tree. But still, these tools do not give enough support to the user since they are

not specifically made for use with the agent configurations. Instead, a configuration tool

should give the user support and simplify the understanding of the agent’s local

configurations and their possible interactions and compatibility with each other. The

configuration tool also needs to help the user to avoid syntax errors by verifying entered

data directly when configuring. This is limited if not impossible to do in a general editing

tool for these data formats. Further, in the considered agent system, all configurations

are stored in one single database that the configuration tool should edit directly.

Otherwise, it would be required to manually copy configuration files from the supporting

tools to the agents when instantiated. However, in the existing editors, the

synchronization with such an agent configuration database is not implemented. The

reason for choosing a central database to store the configurations is to enable the

integration of other software such as simulation tools which support the extraction of

data that otherwise has to be manually copied between software. It also simplifies the

deployment of configurations to agents and enables the possibility to work

simultaneously on editing the agent configurations.

Thus, this paper aims to develop a configuration tool that is specifically made for

the agent configuration format presented earlier in this chapter. All configuration data

defined in the developed configuration tool is then placed in a JSON structure. This can

then be communicated over JSON RPC to other devices. The approach is to use a central

database, in our case an SQL database, that contains all configuration data needed for the

complete manufacturing system. The configuration tool connects to this central database

over the JSON RPC and downloads the latest configuration as JSON objects and uploads

the changes made in the configuration tool. This will enable multiple users to work with

the configurations simultaneously.

3. Proposed Configuration Method

The configuration classes shown in Figure. 1 needs to be implemented in all the

agents, the configuration tool and in the data storage format for agent configurations.

Only then is it possible to share a common knowledge about the meaning, i.e. ontology,

of the configuration data. When a resource or part is added to the manufacturing system,

an agent is instantiated, running in a cloud service. As described earlier, there is

sometimes data to be controlled by the agent, e.g., sensor input or start signals to a motor.

In that case, a network connection is established automatically, based on the

configuration, between the agent in the cloud and the hardware in the added resource or

part. A similar concept of agents running in a cloud service is presented in [13], where

the agents are instantiated based on configurations in a configuration database. The

correct configuration is chosen based on the agent type presented by the added resource

or part.

3.1. Configuration tool design

The configuration tool presented in this paper is based on a standalone graphical

HMI to assist the configuration. Using the proposed configuration tool, it is possible to

focus on one single resource or part at a time. The work order for the configuration tool

presented in this paper is that resource agents are configured first with their related

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 139

interfaces and skills. Then the part agents and process plans are defined. Thus, it should

be possible to make a list of available skills and variables on the resources and to drag

and drop those onto the process plans and part configurations. This removes the need for

the user to remember all variables and skill names of the resources. Descriptions can also

be given on configuration parameters, describing with a user-friendly message what they

do. For example, such a message could describe what a certain skill on a resource can

achieve if executed. This is a great way to connect multiple users, working with

configuration parameters for the same manufacturing system. The configuration tool also

needs to assist the user with warnings when for example a resource with specific skills

is missing in the configuration database. The proposed configuration tool presents

several views to the user. Each of these views can also edit its related entity details, i.e.,

its id, name, description, and type. The views are created based on the classes described

in Figure. 1. Thus, the views are Main view, Agent view, Interface view, Goal view,
Process plan view, Skill view, and Variable view. Each of these views could for example

describe an individual window in the configuration tool.

3.2. Database for storage

A database was chosen for storing the agent configurations. This enables multiple

users to edit the data simultaneously. It also makes it possible to automate the deployment

of agent configurations directly to a real manufacturing system. It is in some cases even

possible to deploy updates while the manufacturing system is online. Imagine a new part

with a new agent configuration. It is then possible to deploy that agent configuration

directly to the configuration database used in the manufacturing system. When the new

part is entering the manufacturing system it gets a corresponding agent associated with

it, using the new configuration added.

 The JSON format is used for communicating with the database, see Figure. 2. This

means that a software is developed to convert between JSON and a database format, such

as SQL queries in the case of using an SQL database. The main aim of not using for

example SQL queries directly from the configuration tool is to avoid knowing anything

about the database format or type. This makes it possible to completely change the

database structure as long as the software attached to the database can convert it to JSON

objects. On the configuration tool, there is also a software that can convert JSON to

objects in the configuration tool. This can, for instance, be a JAVA object, in the case of

using that programming language. This makes it easier to extend the agent configuration

format in the future if needed.

Figure. 2. This figure shows the typical information flow for committing updates from the configuration tool

to the agents through the configuration database.

When an agent is instantiated using the standardized code for all agents, then it

downloads an agent configuration from the database based on some information about

what part or resource it should represent. All agents start by requesting their

configuration from the database by a JSON RPC call. The configuration is then

transferred to the agent as a JSON structure. Hence, the reason for using the database is

to automate the deployment of new configurations and to share the configurations

directly with other users of the configuration tool, enabling the possibility for

Running AgentsAgent Configuration tool JSON JSONConfiguration
Database

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems140

collaborating in projects to develop an entire manufacturing systems configuration. We

have now only considered a single database, meaning that we are changing the

manufacturing system directly when changes are applied. Thus, in the future, it could be

useful to make development copies of the entire system that could be used and tested in

simulations before deploying to the online manufacturing system.

3.3. Connecting to other supporting tools

Many parameters that should be entered into a configuration tool are defined or

calculated in other software such as 3D CAD tools or robotic simulation tools. This

makes it necessary to develop a bridge between those tools and the agent configuration

database. Such an approach is presented in Figure. 3, where the arrows show the

information flow for updates made in the configurations. However, it should be noted that

information can be accessed from the database by all software. This is needed when

editing an already existing agent configuration, nonetheless, updates are always

committed in the direction of the arrows.

Figure. 3. This figure shows the agent configuration tool together with some additional supporting tools 1,2

and 3. All these four tools can be connected to the agent configuration database and automatically deployed

to agents in the manufacturing system.

Product design 1): As an example, for a part designed in a CAD tool, it would be

useful if all specifications such as the definition of a hole with a specific diameter would

automatically be translated into a manufacturing goal for the part agent. This requires the

CAD tool to be extended with an add-on feature that can identify such goals and

synchronize them to the configuration database. In the configuration database there exist

multiple process plans designed for solving specific types of manufacturing goals. Thus,

the addon feature should fetch the goal names for these process plans as a list and present

them in the CAD tool. The user will then manually add goals from that list directly on

the part design. When the user adds such a goal, then it should also be visually reflected

on the part design, where the user then would see a hole. This will give the user an

experience similar to that of working in any other traditional CAD project. The main

difference from using a regular CAD tool will be the limitations to only using predefined

goals. However, this can in some cases completely remove all manual steps for

translating and preparing the part design for manufacturing. Only when a completely

new part is designed, details must be defined manually in the agent configuration tool.

This is not always needed if smaller part changes are made in a CAD tool such as adding

a goal.

Robot simulation 2): Similarly, other parameters such as pick and place locations on

a table or a location in a buffer station are usually defined on either a physical robot or

in a robotics simulation tool. One example of such a tool is RobotStudio, which is a robot

simulation software from ABB where robot programs can be developed and tested offline

[14]. However, when using the proposed concept of agents, then the robot should not

have such a standard robot program and act as a central controller. Instead, the control is

2) Robot simulation

3) Physical robot teaching

1) Product design (CAD)
Configuration

Database Agent Configuration tool

Running Agents

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 141

a shared task between each configurable agent in the system that the positions can be

used on. For example, a part has local target positions that describe a suitable location

for gripping it with a robot gripper or placing it on a buffer. These positions are related

to the parts local coordinate system. The functions for translating between coordinate

systems are included in all agents (resources and parts) and used when they communicate.

A software should be developed that can identify which agent each target position should

be attached with in the configuration database.

Robot teaching 3): It is also possible to create a software to extract positions directly

from a physical robot, by teaching points and selecting which agent they belong to. This

would require a user-friendly HMI used by the operator that manually moves the robot

and stores target positions to the configuration database.

4. Evaluation

This section introduces a manufacturing scenario where a part should get painted

and then leave the manufacturing system. All configuration parameters needed for this

scenario are defined in this chapter. The proposed configuration tool is implemented in

the C# language as a form application. To evaluate the implemented configuration tool,

all parameters from the described scenario are entered into it.

The scenario, presented in this section, is used to evaluate the configuration tool. It

includes one part � with a goal � = �����	
��. The part is placed at the input position

��������� on the conveyor �� and is moved to the paint station �� by conveyors ��, ��

and the robot ��, see Figure. 4. After the part has been painted with the correct colour, it

should be transported by the robot �� to the unloading station ��. Each conveyor has two

position variables, describing where the part can be located:
��������� and

����������� . Thus, �� has:
��������� = 1 and ����������� = 2 while �� has:

��������� = 2 and ����������� = 3 . These correspond to the positions 1,2,3 in

Figure. 4.

Figure. 4. Example of a part � located on a conveyor ��with the goal � = �����	
��, that is solved by moving

to the paint station ��, using resources ��. �� and ��.

The letters �, �, �, � and �, describes locations where a resource is expected to exist.

This notation is used since resources can be replaced and the possibility exists that

multiple alternative resources may exist in the same location. For example, there could

exist parallel conveyors in location �. The part agent searches these locations for agents

that are available and selects one of them. More details about this are described later in

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems142

this paper, where the process plans are defined. All the required parameters for the

manufacturing scenario are presented in Table 1.

Table 1. Configuration data for the presented scenario, sorted by agents.

Id Parameter Name Agent Data type
�� PaintBlue Process Plan

��� BufferInterface � Interface

��� GripInterface � Interface

� PaintBlue � Goal

��� BufferInterface �� Interface

�� InLocation �� Variable

�� OutLocation �� Variable

�� Load �� Skill

�� Transport �� Skill

�� Input: From �� Variable

�� Input: To �� Variable

��� BufferInterface �� Interface

�� InLocation �� Variable

�� OutLocation �� Variable

�� Transport �� Skill

�! Input: From �� Variable

�" Input: To �� Variable

��� BufferInterface �� Interface

�� Paint �� Skill

�# BufferLocation �� Variable

��� BufferInterface �� Interface

�� Unload �� Skill

��$ BufferLocation �� Variable

��! GripInterface �� Interface

�� Transport �� Skill

��� Input: From �� Variable

��� Input: To �� Variable

 The data types are the corresponding configuration classes from Figure. 1. The

name is the agent classes entity name and the id is the entity id. The process plan on the

first row in Table 1 that is noted as �� is not directly related to any specific agent. It is

related to solving the goal �, that may exist on multiple parts. A process plan is later

selected automatically that can reach the goal for the part. Hence, there can be multiple

plans that reach the same goal. Some variable descriptions in Table 1 are noted with

“Input:” meaning that these variables have no defined value in the configuration but act

as input signal holders that get values at runtime.

Multiple process plans may exist that can solve the same goal. In this paper, only

one process plan for the goal � is considered. In Figure. 4, the letters �, �, �, �, � are used

to define needed resources in the manufacturing system that are not known at the

configuration phase. Since the physical resources are not known when the process plan

is defined, they are searched for and found when the system is running.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 143

For reaching the goal � = �����	
��, the following process plan �� is defined:

1. �.Load

2. �.Transport: �.From = �.InLocation

�.To = �.OutLocation

3. �.Transport: �.From = �. InLocation

�.To = �. OutLocation

4. �.Transport: �.From = �. OutLocation

�.To = �. BufferLocation

5. �.Paint

6. �.Transport: �.From = �. BufferLocation

�.To = �. BufferLocation

7. �.Unload

4.1. Implementation of the configuration tool

The configuration tool was implemented to evaluate the proposed design. All

configuration parameters are added into the implemented configuration tool to evaluate

it. In Figure. 5, the agent view of the configuration tool is shown for the part agent. We

can see that it has a BufferInterface, GripInterface and one goal PaintBlue. Each

configuration parameter presented in this view can be modified in detail on separate

views.

Figure. 5. The configuration tool, with the main view shown in the background and the agent view of part �

shown in the front.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems144

All views use a window design, similar to the one presented in Figure. 5. Note that

these views, together provide all the necessary functionality for creating the agent

configurations needed for the scenario, presented earlier in this paper.

5. Conclusion

In this paper, a method for configuring agents was presented that enables users to

adapt a manufacturing system to various scenarios with new parts and resources. The

considered manufacturing system is based on multi-agent technology, where the

configurations describe the agents for each resource and part. This makes it possible to

focus on one device at a time, removing the need to understand other controllers in the

manufacturing system. This is not the case in traditional systems where the users need to

understand most of the other controllers to add new resources or parts. The developed

method for configuring agents include a central agent configuration database. A

configuration tool was also developed where all agent configurations can be managed.

The configuration tool is connected to the database which makes the configurations easy

to deploy since agents can fetch their configurations automatically when instantiated. It

also enables multiple users to collaborate with the same configuration data. The

configuration tool is designed with multiple views that are specifically designed for

configuring agents, based on their configuration classes. This resulted in a lightweight

tool that avoids any unnecessary steps or functionalities. The developed configuration

tool was evaluated by configuring all necessary parameters for a manufacturing scenario.

The presented method also prepares the multi-agent system for adding many supporting

tools, for instance: product design tools for defining goals, and 3D simulation tools for

defining target positions such as buffer locations and gripping points.

6. Acknowledgements

This paper was written as part of the PoPCoRN project, funded by the K-K foundation

and the Miljö för Flexibel och Innovativ Automation, Project reference: 20201192,

Funded under: Europeiska regionala utvecklingsfonden/VGR.

References

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger and O. Madsen, "Robot

skills for manufacturing: From concept to industrial deployment," Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282-291, 2015.

[2] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent progress on programming methods for

industrial robots," Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.

[3] T.Araia, Y.Aiyama, Y.Maeda, M.Sugia and J.Otaa, "Agile Assembly System by “Plug and Produce“,"
CIRP Ann Manuf Technol, vol. 49, no. 1, pp. 1-4, 2000.

[4] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and practice," The Knowledge
Engineering Review, vol. 10, no. 2, pp. 115-152, 1995.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 145

[5] P�������	
������
��������������
������
��������
������������	����������������������������	��
��IEEE Trans.
Ind. Informat, vol. 9, no. 4, pp. 2360-2372, Nov. 2013.

[6] P. Leitao, "Agent-based distributed manufacturing control : A state-of-the-art survey," Engineering
applications of artificial intelligence, vol. 22, no. 7, pp. 979-991, Oct. 2009.

[7] S. Karnouskos, P. Leitao, L. Ribeiro and A. W. Colombo, "Industrial Agents as a Key Enabler for

Realizing Industrial Cyber-Physical Systems: Multiagent Systems Entering Industry 4.0," IEEE
Industrial Electronics Magazine, vol. 14, no. 3, pp. 18-32, 2020.

[8] M. Bennulf, F. Danielsson, B. Svensson and B. Lennartson, "Goal-Oriented Process Plans in a

Multiagent System for Plug & Produce," IEEE Transactions on Industrial Informatics, vol. 17, no. 4,

pp. 2411-2421, 2021.

[9] E. A. Lee, "Cyber Physical Systems: Design Challenges," in International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 2008.

[10] FIPA, "FIPA ACL Message Structure Specification," in FIPA 2002, Geneva, Switzerland, 2002.

[11] FIPA, "FIPA Agent Management Specification," in FIPA 2002, Geneva, Switzerland, 2002.

[12] R. Drath, A. Lüder, J. Peschke and L. Hundt, "AutomationML - the glue for seamless automation

engineering," in Emerging Technologies and Factory Automation (ETFA), Hamburg, Germany, 2008.

[13] M. Bennulf, F. Danielsson and B. Svensson, "Identification of resources and parts in a Plug and Produce

system," in FAIM, Limerick, Ireland, 2019.

[14] P. Abreu, M. R. Barbosa and A. M. Lopes, "Virtual experiment for teaching robot programming," in
International Conference on Remote Engineering and Virtual Instrumentation, Porto, Portugal, 2014.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems146

	1. Introduction
	2. Configurable Agents
	3. Proposed Configuration Method
	3.1. Configuration tool design
	3.2. Database for storage
	3.3. Connecting to other supporting tools

	4. Evaluation
	4.1. Implementation of the configuration tool

	5. Conclusion
	6. Acknowledgements
	References

