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A B S T R A C T   

This article proposes a Plug & Produce and goal-oriented configurable multi-agent system that admits adding and 
removing resources to balance the manufacturing capacity without doing any digital reconfiguration or 
reprogramming. To handle that a new part-agent strategy is developed and described. Goals are central in 
designing autonomous multi-agent systems, possibilities to execute goals in parallel are desirable when the 
process requirements admit concurrent use of resources. Also, a standardized graphical method, the sequence of 
goals chart, is proposed to define and visualize parallel and sequential goals independently of available re-
sources. Premanufacturing of wooden houses belongs to one of many manufacturing industries that claim flexible 
automation systems due to the high degree of customized products and a fluctuating market. A physical Plug & 
Produce robot-based workstation was built up to verify the flexibility in altering capacity and adoption to 
product modifications of a house wall section. Further, the simplicity of modifying the proposed configurable 
multi-agent system was compared to more traditionally designed systems and plain multi-agent systems with 
superior results. The flexibility is built into the proposed system by default as a part of the concept, simple 
enough to be handled by existing in-house knowledge within manufacturing companies.   

1. Introduction 

Goal-oriented multi-agent control is one approach to handle flexible 
and reconfigurable manufacturing systems. Goals are an important 
aspect to be able to create autonomous agents. An autonomous agent 
must have the possibility to decide not only how to achieve a goal, but 
also which goal to select [1]. For parts that will be manufactured, a 
state-oriented model is adopted implying that each agent associated 
with a part tries to reach a final state by executing all assigned goals. 
When all goals are finalized, the part is ready, and the implicit main goal 
is fulfilled. Part is in this article defined as a part of a product or the 
product itself that will be manufactured within the boundary of the 
actual manufacturing system. Hence, a goal can only be fulfilled by 
utilizing skills on resources within this boundary. To assist parts to reach 
their goals, process plans exist that define skills needed to reach a spe-
cific goal. Process plans that solve goals are defined without specifying 
resources, only desired skills, variables, and types of interfaces needed. 
Types of interfaces is a list of abstract interfaces that are connected to 
specific resource agents when needed. Hence, a resource agent is 
selected after a negotiation process during runtime, based on the 

requirements in the process plan. Process plans act to separate resources 
from goals. This makes it possible to have several potential solutions in 
the system and then let the autonomous agents select the most suitable 
process plan depending on the current situation. This is a desirable 
behavior within flexible manufacturing. Further, manually made pro-
cess plans are also desired since they will encapsulate knowledge about 
how to make the best use of different manufacturing processes and the 
relation to the quality, cost, safety, regulations, etc. Note, this article just 
concerns controlling and scheduling a single cell or workstation on the 
cell level as defined in [2]. Generic methods of planning orders, main-
tenance, deadlock avoidance, and collisions are not covered. The part is 
assumed to have chosen the actual workstation in a previous stage, 
collisions are avoided by limitations of workspaces, and the workstation 
is deadlock-free due to its design, only one part is treated at the same 
time. 

Goals depict future desired states of the system. However, when it 
comes to manufacturing, the sequence of goals is important, a new 
method to configure and execute concurrent and parallel goals is pro-
posed in this article. It is applied in a goal-oriented, rule-based, 
reasoning, and configurable multi-agent system (C-MAS). Plug & 
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Produce systems, controlled by C-MAS, enable the possibility to rapidly 
plug in and out resources to adapt to the actual situation. Resources 
prepared with suitable skills can be plugged in without doing any digital 
reconfiguration or reprogramming of the C-MAS. Parallel goals can 
utilize resources concurrently in parallel. Indeed, if the number of re-
sources available is restricted, goals defined to be executed in parallel 
will be executed in sequence instead due to a defined order of priority. 
This approach enables possibilities to quickly avoid bottlenecks by 
plugging in additional resources. Further, the relationship between 
goals, i.e., if they are concurrent/parallel is defined in a graphical 
sequence of goals chart, which is also proposed in this article. The 
sequence of goals chart is a graphical tool for quick and easy visuali-
zation and editing of goals and requirements. Hence, the sequence of 
goals chart enables manufacturing engineers to focus on the production 
goals rather than detailed programming of the equipment. Variables 
connected to each goal are instructively defined in the proposed 
sequence of goals chart. Variables are treated as requirements for 
selecting a suitable process plan to execute the goal, examples of vari-
ables are diameters, temperatures, and locations. This approach drasti-
cally simplifies and shortens the engineering time for the adoption of a 
new or modified part or market fluctuations. Further, this type of 
configuration, which avoids advanced programming, is a key enabler for 
multi-agent-based flexible automation techniques within manufacturing 
since it can be handled by existing competencies in the manufacturing 
companies [3]. In traditional PLC-based automation systems or plain 
multi-agent systems (MAS) are expert engineers required to implement 
changes. Indeed, it is possible to addon flexibility to traditional solutions 
when it is specified from the start of the project. The drawback of this 
approach is that all possible future scenarios must be implemented based 
on advanced guesses, such solutions will be too expensive to be 
competitive. This article proposes digital configuration and design of 
control systems based on the framework C-MAS for Plug & Produce [4, 
5], extended with methods and strategies to execute, define, and visu-
alize parallel goals running on resources concurrently. A physical Plug & 
Produce demonstrator was created to evaluate the flexibility and 
simplicity of C-MAS compared to traditional PLC/robot systems and 
plain MAS/robot systems. The Plug & Produce demonstrator worksta-
tion is built around a fixed industrial robot equipped with an automatic 
tool changer and a tool stand with tools for placing, nailing, screwing, 
and drilling, further on changeable modules containing an extra robot 
for concurrent operations, buffers for studs, boards, and electrical boxes, 
and fixtures for the final part. The results were compared to traditional 
ways of handling flexibility, where foreseen flexibility is pre-
programmed in the system from start or achieved by reprogramming. 
Foreseen flexibilities are hard to predict and are combined with high 
initial cost, reprogramming is time demanding and thereby costly. The 
simplicity and flexibility are built-in by default as a part of the concept in 
the proposed C-MAS. 

2. Related work 

The amount of engineering time is extensive when it comes to soft-
ware development of traditional control-system even for a minor 
adaption to modification of a product [6]. The use of a multi-agent 
system is often proposed in the literature as the solution for an agile, 
flexible, and adaptable control. Several publications on multi-agent 
systems within the area of reconfigurable industrial discrete 
manufacturing report promising results and show successful imple-
mentations in demonstrators in a wide range of applications. Many as-
pects such as over-complicated solutions, immature technologies, and 
unpredictable performance make it a non-profitable solution [7]. Lack of 
standards leads to ad-hoc designs and strategies just to solve rather 
simple prototype cases. Even if the cases are simple the programming 
jobs in available multi-agent platforms are complex and extensive, 
expertise level of competence is needed to implement and maintain most 
of the existing multi-agent applications [3]. There also exists a huge gap 

between theoretical advantages and real advantages that have been 
proved in practice [8]. Therefore, the majority of the industry still uti-
lizes centralized, hierarchical structured control systems with applica-
tion programs that are tailored function by function [9]. This approach 
results normally in a high and predictable manufacturing rate at the 
expense of flexibility and the ability to treat variations and disturbances. 
Changes will often lead to a loss of production rate due to unbalanced 
use of resources. 

2.1. Goal-oriented theories 

The importance of defining goals in relation to the performance of 
the executed tasks is not new and goes back to a published work in 1968 
by Locke [10], and the Goal Setting Theory [11] where complex goals 
were divided into several smaller subgoals along the way to the final 
goal. Three different domains of goal models in artificial intelligence 
have been identified [12], from task-oriented which has the lowest level 
of complexity to state-oriented and worth-oriented goal models. The 
different domains affect the properties of agent communication. Agents 
in a task-oriented domain, the lowest level, operating in a 
non-conflicting operation environment, receive a list of jobs that must be 
performed, the negotiations are mainly concerning the distribution of 
jobs. Agents in a state-oriented domain have subgoals that specify a path 
of states to an acceptable final state. The coexisting agents can both 
compete and help each other to reach the final state. In the worst-case 
one agent can hinder another agent to reach a certain state. The nego-
tiation aims to find schedules and joint plans, for the agents to achieve 
the best common output in their progress to the final state. Agents in a 
worth-oriented domain operate almost in the same manner as the agents 
in a state-oriented domain, both have the final state of the whole system 
as a goal. The difference is that the agents rate the acceptability of each 
state in their striving for the next higher-rated state. The agent is aware 
of the entire system and has a broad view of the common target strategy 
and can accept a lower-rated state if it gains the common plan. However, 
the lowest level of goal models, the task-oriented goal model, fits best to 
the lowest levels in an industrial application, in the workshop, due to 
better real-time properties and predictable behavior, state-oriented and 
worth-oriented models fit better when it comes to planning and sched-
uling tasks [13]. The C-MAS technique used in this article concerns the 
lowest level of industrial manufacturing but has a state-oriented 
approach. C-MAS has several states and a final state when all states 
(goals) are fulfilled, and a part is finalized. C-MAS are after all fast and 
have a short response time due to short negotiation processes, but the 
most critical real-time demanding tasks can be performed locally on 
PLCs or robot controllers. 

2.2. Planning of automated discrete manufacturing 

Planning manufacturing tasks is complex, especially when there are 
multiple operations, and optimization problems will often occur. One 
example is the machining problem in [14] there most of the operations 
have a sequence that starts with picking up a tool and performing the 
machining job and then leaving the tool in the tool stand again. Time can 
be saved by merging all the operations that use the same tool. It is not 
always possible to organize all operations wise, some operations must be 
fulfilled before others can initiate. Hence, a good planning strategy is 
needed. 

Planning strategies for MAS can rely on social laws [13]. The func-
tion can be illustrated by the right-hand rule, which proposes to give the 
way to the traffic that is coming from the right. Social laws are used to 
restrict the actions of each agent in relation to other agents [15]. The use 
of social laws is fast in solving problems, but the solutions are not always 
the most optimal and suitable for all systems. 

Preconditions are a logical description of what criteria must be ful-
filled before an action can be initiated. Preconditions work well on ac-
tions that have a known deterministic effect and a known cost [16]. 
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Preconditions will help automatic planners [17] to make efficient and 
functional plans of all possible sequences of actions from the initial state 
to the final [18]. Well, known automatic planners are STRIPS [19], the 
programming language PDDL [20], and MA-PDDL for multi-agents [21]. 
The cost of doing each action will control the planner to select the most 
efficient sequence. The use of preconditions will work for mostly all 
systems within discrete industrial manufacturing, but the effect of the 
preconditions can be challenging to overview. C-MAS utilize manually 
created sequences of goals charts, see Fig. 5, that will automatically 
generate preconditions. The sequence of goals chart will enable possi-
bilities for the process planner to easily configure the process according 
to efficiency, part design, and quality. 

Several graphical methods for designing preconditions have been 
identified in the literature. AND/OR graph [22] describes different al-
ternatives of serial and parallel sequences and in what sense a product 
can be assembled. The best assembly plan is automatically selected ac-
cording to the weight of operations, how complex the assembly is, and 
the stability of the subassemblies. The plan can be rescheduled online 
during the operation, for example, a recovery from an unpredictable 
deviation. This property of rescheduling has proven to be successful in 
robot/human collaboration applications. In the work of Johannsmeier 
et al. [23], a plan was automatically rescheduled if an operator went in 
to make a certain work randomly to support and speed up the assembly 
process. AND/OR graphs are suitable for assembly systems but are hard 
to apply to processing operations. The magnitude of the AND/OR graphs 
will explode with increased complexity. 

Associated product net [24] derived from Petri net [25] are used to 
describe in what way material will be processed and assembled into a 
complete product. Pre-state, processing and post-state of each operation 
are described. Associated product net is suitable in systems that both use 
assembly and process operations. In similarity to the AND/OR graph, the 
net will explode with increased complexity. 

Liaisons [26] describe the priority relations among different parts in 
an assembly. The rules are simple and describe the relations of all con-
nections between the parts, if one part must be mounted before another 
or if it can be done in parallel. Liaisons remind of social laws but are 
part-specific and have a formalized language. In industrial discrete 
manufacturing, the planning task is often given from the disposition and 
requirements of the product, fixturing, and tools. Given that a sequence 
of standard procedures (SOP) is normally established. A graphical view 
of an SOP based on liaisons theories is formally described in [27]. The 
graph is similar to the sequential function chart (SFC) [28], which is 
commonly applied for sequential actions in industrial control systems. 
An SOP can easily be translated to a sequence of goals chart that is 
proposed in this article as input to a C-MAS. 

2.3. Reference system architectures 

A reference system architecture describes relations between entities 
in a system. Traditional technical descriptions describe technical details, 
a reference system architecture describes the system at a higher 
abstraction level, facilitates the design process, and makes it easier to 
understand. Complicated tasks are in a multi-agent system divided into 
several simpler tasks that are distributed among the agents. Each task 
will be easy to handle but the overall system is complex and is expected 
to be reconfigurable. Therefore, creating a good reference system ar-
chitecture is central to developing multi-agent systems [29]. The design 
architecture will strongly influence the behavior of the system in the 
aspect of reconfigurability and throughput performance. Efforts must go 
to achieve a system that is flexible and still functional at the end of the 
lifetime. There exist several reference architectures for intelligent 
reconfigurable discrete manufacturing systems, an overview of refer-
ence system architectures for multi-agent systems will be given here. 

One early and most referred architecture within manufacturing is 
PROSA [30], based on product, resource, order, and staff holons 
focusing on planning, supervision, and orchestration of the 

manufacturing. Holons are in a similarity to agents autonomous and 
cooperative distributed units of software. Each holon consists of an 
information-processing part and a physical or logical part. 
Manufacturing resources or products that will be manufactured are ex-
amples of physical parts and the logical part can be the logic for the 
execution of orders. The product holon contains the process plan, bill of 
material, and product specification. Resource holons represent the 
manufacturing machines like robots, transport systems, operators, ma-
terial buffers, and other physical objects. The order holon is responsible 
for that the product is manufactured according to the customer order. 
Staff holons can be added to assist the basic holons with expert knowl-
edge and enable the possibility to implement centralized control of the 
system as a whole. C-MAS which is proposed in this article has a similar 
approach as PROSA that have products or part-agents containing process 
plans. 

Human collaboration will increase the flexibility of an automation 
system. Adaptive holonic control architecture ADACOR [2] increases 
both the flexibility within the automation and admits human collabo-
ration on several levels from the cell level on the shop floor up to the 
enterprise level. The operational holons have direct contact with the 
physical manufacturing resources and are controlled by the supervisor 
holons which in turn collect information from the task holon. The su-
pervisor holon supplies the task holons and operator holons with an 
optimized schedule plan. C-MAS permits collaboration but work are 
ongoing on scheduling and safety issues within collaborations. 

Plant automation based on distributed systems PABADIS [31], con-
sists of local mobile agents that are abstractions of manufacturing re-
sources and order agents that convert the customer order to a set of work 
orders that then consist of a sequence of tasks. Each work order connects 
to a mobile product agent that takes care of scheduling, manufacturing 
resource allocation, and execution. PABADIS is operating on a higher 
level than C-MAS which operates on the cell level. PABADIS has a plant 
management agent as a supervisor of the system that combines the en-
terprise resource planning system with the resources on the cell level. 

ADMARMS [24] and [32], axiomatic design of a multiagent recon-
figurable mechatronic system, addressing full heterogeneity of 
manufacturing processes, resources, and interactions between re-
sources. ADMARMS are like C-MAS based on product agents and 
resource agents. The resource agents are divided into transport agents 
and reconfiguration agents. The transport agents are in turn divided into 
several different agents among them transport, process, buffer, and 
production process agents. ADMARMS divides the reference architec-
ture into five seamless transmittable stages where stage 1 is an abstract 
level of design principles, stage 2 is the modeling of the reference ar-
chitecture on a conceptual level, stage 3 is the instantiation of the 
implementation-specific architecture, stage 4 concerns the design of the 
agent behavior and stage 5 the implementation of the hardware. 

A comprehensive overview of different system reference architec-
tures is provided by [33]. Rockwell Automation (RA) presents a refer-
ence system architecture that was in origin based on just one order agent 
and one agent for production plans. Product agents were introduced in 
[34]. Logic programmable control (PLC) based on the industrial pro-
gramming standard IEC61131–3 [28] is used for control of the real-time 
demanding physical processes. The product agent includes a knowledge 
base of beliefs that are continuously improved over time. The concept 
was enlarged with control strategies, the plan of intention, and 
optimization-based planning [35]. Lack of central control of a 
multi-agent system will often result in a loss of performance. The 
introduction of a product agent that follows a process plan and has a 
global view of the manufacturing process will increase the throughput. 
Cooperation between product agents and utilization of the resources 
must be further developed in RA to improve the throughput rate before 
industrial acceptance. An IEC61131–3 structured text compiler, that is 
implemented in C-MAS, enables possibilities to write skills in the same 
standard as in the PLC world. It is also possible, like RA, to connect a PLC 
for real-time implementations. Possibilities to write efficient PLC code in 

A. Nilsson et al.                                                                                                                                                                                                                                 



Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

4

skills on resource agents and selections of the highest prioritized goals 
and process plans with the lowest cost improve the throughput in C-MAS 
to acceptable levels. 

RDF [36] Resource Description Framework is a general method for 
abstract semantic modeling of web resources realized by using the 
resource-oriented web communication architecture (REST) [37]. These 
web technologies are proven to work well implemented in a distributed 
multi-agent-based manufacturing system that is flexible and dynamic 
changeable on the fly. An RDF-based manufacturing system for 
customized furniture is described in [38] where the ontology is written 
in text and graphical user interfaces are used as in C-MAS. The 
text-based ontology is mainly aimed at engineers and the graphical user 
interfaces can be used by the customers that customize the product 
remotely from home on a web browser [39]. 

SCEP (Supervisor, Customer, Environment, Producers) [43] is a 
multi-agent framework for the planning of manufacturing activities. 
Handled by a supervision agent that collaborates with manufacturing 
order agents and machine agents that in turn collaborate with the 
environment. The architecture was extended with a maintenance agent 
SCEMP in [40] that enables efficient planning of maintenance activities. 
A planner is necessary for optimizing manufacturing efficiency, and 
avoiding deadlocks and collisions but is not covered in this article. 
Except that C-MAS has no supervisor the concept of SCEP is close to 
C-MAS. 

C-MAS has adopted a reference system architecture that empowers 
configurable agents that are all instances of the same executable code, 
an approach that will simplify the reference architecture to part agents, 
resource agents, and process plans [5], material agents were added in 

this article. The reference architecture in Fig. 1 has a one-to-one relation 
to the digital configuration. Distinguishes exist between part agents, 
material agents, and resource agents. Part agents are active and have 
goals and a strategy to solve the goals by using process plans. Material 
agents and resource agents utilize skills on request from the part agent 
through the process plans. Graphical and text-based tools are applied for 
a digital configuration of agents. Resource agents will utilize other 
resource agent skills if needed. The resource agent strategy is described 
in [5]. 

3. System overview of C-MAS for Plug & Produce 

Plug & Produce facilitates and shortens the time of reforming a 
manufacturing system to fit actual situations with a quick plugin of for 
moment the best-suited resources. Resources in the proposed Plug & 
Produce system are mounted on top of process modules that have 
standardized mechanical, energy, and media interfaces. An industrial 
programmable logic controller (PLC) is typically located onboard each 
process module to take care of initiation and communication to the 
corresponding agent. The PLC can also be used for the execution of skills 
that demand real-time operation. After connection, the PLC of the pro-
cess module will find and initiate a related agent by utilizing a mecha-
nism described in [4]. This article is based on the framework C-MAS for 
Plug & Produce [5], extended with methods and strategies to execute, 
define, and visualize goals that can execute concurrently in parallel. 
Every physical resource needs a digital resource agent configuration 
customized for the functionality of the actual resource. Abstract in-
terfaces permit connection and disconnection of resources without 

Fig. 1. The C-MAS class diagram describing the reference architecture and ontology of the agent configuration.  
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doing any digital reconfiguration. Abstract interfaces are mapped to 
resource agents during runtime when needed after a negotiation among 
the resource agents. If a copy of an earlier used physical resource is 
made, a copy of the corresponding resource agent must be created 
before use. The newly copied agent must be given a new name, id 
number, and address to the PLC onboard the resource. The agents are 
implemented on top of the Java Agent Development Framework (JADE) 
and communicate and negotiate through JADE. Communication to 
external units will go through communication protocols such as JSON 
SOCKET RPC, OPC-UA, or REST depending on the connected unit. 
Possibilities exist to add other communication protocols when needed. 

3.1. The reference system architecture of C-MAS 

What distinguishes C-MAS from other MAS is its architecture, all 
agents in C-MAS are instantiated from one unified executable piece of 
code and the digital configuration dictates the functionality and 
behavior of the agents. Three types of instantiable agents coexist, part- 
agents, material agents, and resource agents. The configuration data is 
stored in objects, see the class diagram in Fig. 1, which is a general 
ontology aiming to be generic and applicable for all discrete 
manufacturing automation applications. Two kinds of configurable 
process plans exist, (i) process plans that specify how to achieve goals 
running on part agents and (ii) process plans that specify how to execute 
skills. The only instantiable objects are part agents, material agents, 
resource agents, and process plans, all other objects, written in italic, are 
abstract and not instantiable, only the most important methods are 
included in the class diagram. Part agents contain the goals and are 
global for the process plans that solve the goals, part agent variables are 
thereby shared between process plans for goals. Data can also be stored 
in variables locally on resource agents and distributed on agent in-
terfaces. Skills and process plans are stored in an execution string that 
consists of IEC61131–3 structure text program code [28]. The part agent 
strategy is designed such that when goals initiate it starts to search for 
suitable process plans, and process plans select skills via interfaces on 
resource agents. These connections are considered loosely and are 
pointed out by dashed dependency lines. 

A new agent will be instantiated when a physical component or 
resource is introduced to the system. When an instance is made of an 
agent it starts by downloading its configuration from a database. The 
configuration includes all the properties of that specific agent and makes 
that agent unique in the system. After instantiation, the desired 
configuration is assigned to the agent. Agents are divided into two 
different categories, active and passive:  

- Active agents (part-agents) will initiate actions based on goals, 
strategies, and available resources skills to change its own or other 
agent states. 

- Passive agents (material and resource-agents) will not initiate any-
thing by themself. All actions performed by a passive agent must first 
be initiated by another agent through the exposure of skills or by an 
external event. 

Process-oriented applications are normally performed on a part of 
raw material that will be refined to a final part. The part-agent repre-
sents the part from the initial raw state to the finalized state. Assembly 
processes, on the other hand, consist of materials that will be assembled 
to a final part. That means that the part-agent must be considered 
imaginary until the part is assembled and finalized. It is not necessary to 
model materials used in an assembly process as agents, but passive 
material agents are introduced in this article. The reason for modeling 
materials is that it enables the possibility to have agents carrying in-
formation about the specific material, location, and skills knowing how 
the material is supposed to be assembled or treated. 

3.2. Part-agent strategy for executing concurrent and parallel goals 

This section will describe in detail the proposed configurable multi- 
agent system (C-MAS). The configuration is a set of data that include 
information about resources, parts, goals, process plans, skills, etc. There 
are two main configurable types (i) agents and (ii) process plans, see the 
C-MAS class diagram in Fig. 1, which describes the ontology of the agent 
configuration. Each type represents an object with attributes and a hi-
erarchy with relations. Process plans are introduced to assist agents to 
solve a specific manufacturing task, a goal. A process plan is designed by 
process engineers to reflect a suitable solution concerning quality, cost, 
etc. All process plans Π in C-MAS are defined and included in the set Π =

ΠG ∪̇ ΠS, where ΠG is a set of process plans used to achieve goals and 
ΠS is a set of process plans for executing skills. A single process plan π is 
defined as π ∈ Π and contains a name and a cost and a string variable, 
execution, that contains a sequence of skills, a set of variables V, and a set 
of abstract interfaces U. For a part-agent p a process plan πg describe a 
possible solution on how to reach a specific goal g among all goals of a 
part agent Gp. A process plan πg are general and shared among all part 
agents P where a single part p ∈ P. Note, there might exist several 
alternative process plans πg ∈ Πg to achieve the same goal g. For each 
goal g ∈ Gp for a part agent p, there must exist at least one process plan πg 

in ΠG. Resource agents R that are tight connected to the hardware 
execute the goals Gp. A process plan for a skill πs ∈ Πs on a resource 
agent r consists of an executable sequence of skills s containing refer-
ences to locally available actions/skills and required skills on other 
resource agents r ∈ R. 

To be able to reach a higher degree of flexibility, with interchange-
able resources, there is a need to avoid specifying the specific resourceto 
execute a specific skill. For that purpose, all required skills s on resources 
R are defined through abstract (unassigned) interfaces U during the 
design phase. These abstract interfaces U are then mapped to real in-
terfaces I on resource agents R when needed during runtime. Each ab-
stract interface u, where u ∈ U, consists of a tuple of variables, 

u = 〈Su,Vu〉,

where Su is a set of desired skills and Vu is a set of desired variables. Each 
real agent interface if , where if ∈ I, also consists of a tuple of variables, 

if =
〈
Sif ,Vif , bookedif

〉
,

where Sif is a set of skills s, Vif is a set of variables v and the variable 
bookedif indicates if the interface if and its resource agent r are booked 
for use or not. The set of skills Su and variables Vu is used during the 
search process to map unassigned abstract interfaces u to real agent 
interfaces if by matching the variables of Su and Vu against Sif and Vif . 
Each variable v ∈ Vif consists of a tuple of variables, 

v = 〈namev, lowerBoundv, upperBoundv, valuev〉,

where the lowerBoundv and upperBoundv forms a range of the valuev that 
is valid for the interface mapping. Each skill s ∈ Sif consists of the 
following tuple of variables, 

s = 〈names, πs〉,

where the names is the name of the skill, πs is a process plan to execute 
the skill which also contains a cost to utilize the skill s and an execution 
string. The interface if that has skills with the lowest cost will be 
selected. The order in which goals are achieved is important and is 
determined by associated preconditions. A part-agent p contains a set of 
goals Gp. Each goal g ∈ Gp is defined as a tuple of variables, 

g =
〈
nameg,Vg, assignedg, fulfilledg, precondg, priorityg

〉
,

where the variable nameg is the name of the goal, Vg are a set of variables 
associated with the goal, assignedg indicates if the goal g is assigned to a 

A. Nilsson et al.                                                                                                                                                                                                                                 



Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

6

process plan πg that aims to fulfill the goal g. Further, fulfilledg is true 
when the goal is achieved and precondg controls when the process plan of 
a goal πg can be initiated. Hence, a specific goal g can only be achieved if 
the associated precondg is true, which is a logical expression that eval-
uates to true or false. If available resources R are limited and more than 
one goal is possible to execute the priorityg are used to prioritize one of 
the goals g. How a part-agent p reach a specific goal g must be defined in 
a process plan πg that solves the goal. The part-agent p needs a strategy 
of how to select g in Gp and find the best πg to use. To be able to handle 
concurrent and parallel goals a new strategy for the part agents was 
developed in this article. A simplified overview of the executive struc-
ture of one part-agent p is given in Fig. 2. Further, the part-agent strategy 
is described in pseudocode in Algorithm 1. An overview of the pseudo- 
code will follow here: The main loop selects a goal g that is possible to 
start and have the highest priority, priorityg, and then finds the process 
plan πg that solves the goal with the lowest cost. The reach goal thread, 
select and book an interface if ∈ I that are associated to a resource-agent 
r that have the required skills s. A resource-agent r is able tobook other 
resource agents via a process plans for skills πs and a agent interface if if 
needed to fullfill a skill s. The resource strategy are further described in 
[5]. The fork function in the main loop enables the possibility to run 
goals concurrently in parallel and is therefore central in the part-agent 
strategy. The fork function creates a new parallel thread for each goal 
g that are active. When a process plan πg has been started a new g and a 
πg can be selected to start in parallel. To minimize the risk of deadlocks 
the booked resources are not un-booked until the goal is fulfilled. This 
approach works well if each goal is short and contains a well-limited 
number of associated operations. Collisions between for example two 
concurrently working robots are avoided by defining a range between 
the interface variables lowerBoundv and upperBoundv. 

3.3. The sequence of goals chart 

An important requirement of the industry is to have stable control-
lable manufacturing processes that guarantee the throughput and 
quality of produced parts. Therefore, manually created sequences of 
goals, one for each kind of part, and manually created process plans for 
solving the goals are proposed. Technically, the easiest way of defining 
sequences of goals is to define preconditions for each goal which has 
proven to be a tough task and is hard to expose and overview. The 
intention is that a process engineer employed in a manufacturing com-
pany should be able to edit the sequence of goals chart and the process 
plans without programming knowledge. For these reasons, a graphical 
sequence of goals chart was introduced in this article as a part of the C- 

MAS configuration tool, see Fig. 5, that generates preconditions and 
levels of priority for the goals based on the design. Preconditions and 
priority can be found in Algorithm 1 as precondgand priorityg. For 
sequential goals, the precondition is that the former goal in the chart is 
fulfilled fulfilledg=true. Parallel goals will be given the same pre-
conditions as they can initiate in parallel at the same time. If there exist 
more parallel goals than resources that can achieve the goals, the pri-
ority variable of the goal will be used. Parallel goals in the sequence of 
goals chart will, by default, be given higher priority than following 
goals. The sequence of goals chart gives an overview of the 
manufacturing steps/goals by reading the sequence of goals from the top 
to the bottom, with the first goal on top. The two vertical and parallel 
lines indicate that the underlying goals can be executed concurrently in 
parallel if multiple resources exist. Symbols and functionality are 
derived from [27], which gives a formal explanation of functions and 
symbols. The variables that are related to each goal are aggregated to the 
goal in the chart as requirements of the goal and are then matched and 
assigned to variables defined on process planes that solve the goals. 

4. The industrial house wall prefabrication case 

A test case of prefabricated wall sections of wooden houses was 
selected by the authors together with a reference group consisting of 
industry representatives from the branch of prefabricated wooden 
houses, due to the high demand for flexibility when it comes to auto-
mation. In general, this industrial sector cannot utilize automation due 
to the issue of flexibility. The two main flexibility drivers are (i) highly 
customized products and (ii) market fluctuations. Prefabricated houses 
are regularly customized even if the house model is chosen from a cat-
alog of standard houses, i.e., a customer wants adaptations. An adap-
tation can help to fit the actual building spot and requirements of the 
people that will live in the house. In addition, almost all wall sections in 
each building are similar but unique due to their location in the house. 
Further, this industrial sector is very sensitive to the overall health of the 

Fig. 2. Overview of execution structure for selection and executing of con-
current and parallel goals. 

Algorithm 1 
Part-agent strategy including a fork function that handle concurrent and parallel 
goals.  

A. Nilsson et al.                                                                                                                                                                                                                                 



Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

7

economy and balancing is a big problem. A downscaled section of a 
house wall is chosen in this test case. Even if downscaled, relevant in-
dustrial equipment and solutions were addressed in the demonstrator. 
The house wall was modeled as a part agent named wall in the described 
C-MAS control system, see Fig. 3. This test case represents an assembly 
process which means that the wall does not physically exist until it is 
assembled. 

Fig. 4 visualizes the Plug & Produce demonstrator workstation that 
was built up for this test case scenario. The workstation consists of one 
industrial robot arm equipped with an automatic tool changer, a tool 
stands with different tools for placing, nailing, screwing, drilling, and 
three pluggable process modules, one fixture module for the part wall, 
one automatic buffer module for studs, and one buffer module for 
plywood, drywall, and electrical boxes. 

Agent identification requires early attention when it comes to 
modeling in the C-MAS digital configuration. What components and 
resources are identified as agents are crucial for the overall behavior of 
the system concerning functionality, flexibility, and reconfigurability. 
At least one part-agent must exist, in this case, the wall. To simplify only 
one kind of part exists at a time and no material agents have been used, 
all materials in this assembly process are standardized. Hence, only the 
wall itself is customized regarding the selection of joining processes, and 
numbers and locations of electrical boxes. 

All included process modules, tools, and robots were modeled as 
resource agents, see Table 1. 

For an efficient system, a good rule is to define all goals in parallel 
that can be executed concurrently independent of available resources. 
That enables the later introduction of new resources, e.g., to increase the 
manufacturing rate by adding an extra robot, see the sequence of goals 
chart in Fig. 5. The first goals are to place two studs in a fixture as a base 
and frame for the wall, both studs can be placed at the same time but 
must be placed before the plywood board, which should be placed upon 
the studs. The plywood shall then be joined to the studs by two rows of 
nails that also can be done in parallel. On top of the plywood shall 
drywall be placed and joined by two rows of screws, also in parallel. The 
option, range, in C-MAS is in this case used for the selection of nails or 
screws, nails are selected when there is a short distance between the join 
locations else screws are selected. Two holes will then be made, and an 
electrical box will be placed in each hole. The two holes for the electrical 
boxes can also be made in parallel but as soon as one hole is drilled an 
electrical box can be mounted in that hole. 

Each goal must match at least one process plan solving that goal. 
There exists one process plan intended for the goal PlaceStud that takes 
one variable, location. The pick location will be provided by a skill 
FindStud executed on the stud buffer-agent, see Table 2. The two skills 
Pick and Place will be executed on a matching gripper tool-agent that in 
turn needs a robot-agent to execute the motion, see Table 3. which de-
scribes the process plan for Pick and the variable pickLocation. Skills 
are defined in the PLC programming language structure text (ST) spec-
ified in IEC61131–3 [28], see Table 4. It is also possible to define a range 
of variables to select a suitable process plan. For nailing the variable 

distance must be in the range of 10 to 60 mm , see Table 5. 

5. Validation 

The Plug & Produce demonstrator, see Fig. 4, of the industrial house 
wall prefabrication case, was utilized in the validation. Three different 
systems were evaluated: C-MAS, PLC, and MAS all three as a supervisor 
to an industrial robot.  

• C-MAS was configured by the graphical, sequence of goals chart, 
together with digital configurated process plans and skills, described 
in chapter 4.  

• The PLC was programmed by a traditional approach in the standard 
programming languages for industrial control systems IEC61131–3 

Fig. 3. The part wall and included materials.  

Fig. 4. Plug & Produce demonstrator workstation of the industrial house wall 
prefabrication case. 

Table 1 
Parts and resources that are modulated as agents.  

Agents Explanation 

Wall Part-agent wall that have the goals. 
robotIRB4400 Resource-agent for the Industrial robot IRB4400 with 

automatic tool changer equipment, skills to do motions and 
put vacuum, triggers and tool changer on and off. 

wallFixtureModule Resource-agent for the process-module that fixating the 
studs of the wall, skills to keep track of the wall 

studBufferModule Resource-agent for the process-module including a PLC 
that controls an automatic stud buffer that push out one 
stud at the time and signal available studs, skills to provide 
studs and keep track of the pick location of the stud. 

boardsAndBoxModule Resource-agent for the process-module that store 
plywood, drywall, and electrical boxes, has skills to keep 
track of number and locations of boards and boxes. 

toolStand Resource-agent for the tool stand carrying all robot-tools, 
skills to keep track of available tools and the corresponding 
locations. 

vaccumPlate Resource-agent for the pick and place tool for studs, 
plywood, and drywall, skills to do place operations. 

vaccumCup Resource-agent for pick and place tool for electrical boxes, 
skills to mount electrical boxes. 

nailgun Resource-agent for the automatic nail-gun with magazine 
for nails, skills to nail and keep track of available nails. 

screwdriver Resource-agent for the automatic screwdriver with 
magazine for screws, skills to screw and keep track of 
available screws. 

driller Resource-agent for the drilling machine that drills the hole 
for electrical boxes, skills to drill Ø70mm holes. 

robotModule Resource-agent for the process module containing a robot 
for parallel and concurrent use  
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[28] utilizing a sequential function chart (SFC) and combinatoric 
logic for each function.  

• The MAS was implemented in object-oriented JAVA, distributed on 
agents by using the agent framework Java Agent Development 
Framework JADE [41] which is commonly used by scholars.  

• The robot program was in all three cases implemented in the ABB 
Robotics programming language RAPID [42]. 

The implementations were done by the authors and the result was 
validated by the authors together with external resources and a refer-
ence group for this project. The reference group consists of representa-
tives from different companies, system builders, and manufacturers 
from the industry of prefabricated wooden houses. 

The three setups; C-MAS, PLC, and MAS were all acting as supervi-
sion systems to control the robot. General functionalities (skills) such as 
a move to a location and open/close gripper were implemented in the 
robot when C-MAS controls the robot. In the case of PLC and MAS, the 
robot was implemented in a traditional manner using complete robot 
routines, for example, one routine for picking up a stud and placing it on 
the fixture and moving the robot back to its home position. The reason is 
that as much as possible is normally implemented in the robot, which 
makes the robot easier to handle when all reference coordinate systems 
(work objects, tool objects) and locations are there. It is possible to jog 
the robot back and forth along the path and around TCPs and along 
workpieces, which facilitates maintenance, restart, and exception 
handling. C-MAS is integrated close to the robot to get rid of handling 
issues that occur when general skills are used by letting resource agents 
take care of coordinate systems and locations and download them to the 
robot when needed. These methods will be explained further in up-
coming articles. The comparison was in all three cases done on fully up 
and running systems and the functionality of the three systems was the 
same. 

The purpose was to validate the flexibility scenarios of (i) highly 
customized products and (ii) market fluctuations. But also, the 
simplicity of doing changes to the system by the existing in-house 
personnel to avoid dependency on external competencies. Examples of 
external competencies can be PLC, robot programming, and expert 
competence in agent object-oriented programming, which are further 
discussed in [3]. The man-time is an important factor and will directly 
reflect the cost of doing modifications to the system and as a measure-
ment of the agility of the company against the market. When external 
companies are involved, the time will automatically increase because 
specification work must be done as a basis for purchase procurements 
and quotations, and project meetings when several competencies are 
involved. 

The flexibility and simplicity of performing changes were evaluated 
and compared by the following scenarios:  

1) Modification of part-design of an existing part.  
2) Continuously changing part-design, one-of manufacturing.  
3) Select manufacturing process depending on part requirements. 

Fig. 5. Sequence of goals chart, visualizing a sequence of goals and goal var-
iables. The final implicit goal is a finalized part Wall. 

Table 2 
Process plan for the goal PlaceStud (variable location).  

(* Find location of pickable stud in the stud buffer using the abstract interface aStudBuffer 
*) 

aStudBuffer.FindStud(); 
(* Run the skill pick to pick up the stud from stud buffer. Pick location is provided by the stud 

buffer agent *) 
aGripper.Pick(pickLocation:= aStudBuffer.PickStudLocation); 
(* Run the skill place to place the stud on the fixture. Place location is provided from the 

goal variable location *) 
aGripper.Place(placeLocation:= goal.location);  

Table 3 
The process plan Grasp that turns the vacuum on for gripping and wait until the 
vacuum is established.  

(* Output signal connected to de valve trough the abstract interface aRobot that turns the 
vacuum on *) 
aRobot.qxVacuumOn:= TRUE; 
(* Predefined function WaitUntil will wait until the signal is true *) 
WaitUntil(robot.ixVacuumEstablished); 
(* Turns the vacuum signal off *) 
aRobot.qxVacuumOn:= FALSE;  

Table 4 
Process plan for the skill Pick (variable pickLocation).  

(*Move the robot to 100 mm above the pick location using the abstract interface aRobot *) 
aRobot.MoveTo(targetLocation:= pickLocation, zOffset:=100.0); 
(*Move the robot to the pick location *) 
aRobot.MoveTo(targetLocation:= pickLocation, zOffset:= 0.0); 
(*Grasp the stud *) 
aRobot.Grasp(); 
(*Move the robot to 100 mm above the pick location *) 
aRobot.MoveTo(targetLocation:= pickLocation, zOffset:=100.0);  

Table 5 
Process plan for goals Join by nails (variables startLocation, endLocation and 
distance range 10 to 60 mm).  

(* Nails a row of nails if the distance is within 10 to 60 *) 
aJoinTool.Nail(startLocation:= goal.startLocation, endLocation:= goal. 
endLocation, distance <10..60>:= goal.distance);  
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Table 6 
Comparison between C-MAS few simple robot skills, traditional supervising PLC and robot systems, and supervising MAS and robot systems with complete robot programs.  

Test case on scenarios 1 – 4 Aspects C-MAS configuration PLC and Robot programming MAS and Robot programming 

1) Increase the number of 
electrical boxes from two to 
three and give the new box a 
location as a planned and 
scheduled action 

Method Add a new goal and location in parallel with the origin 
goals for electrical boxes using the sequence of goals chart. 

Modify the PLC program to include the order of the new 
electrical box. Create new routines in the robot and connect 
to new communication tags. Teach new targets in the robot 
program. 

Modify the MAS code with a new goal to give the order of a 
new electrical box. Create new routines in the robot and 
connect to new communication tags. Teach new targets in 
the robot program. 

Need of 
competence 

Inhouse External External expert 

Part of the 
concept 

Yes No No 

Man-time 5 min 16 h 16 h 
2) The number of electrical boxes 

and locations variate from one 
part to another 

Method Define goals and locations for electrical boxes for each part 
using the sequence of goals chart. 

If the variation is known before installation it is possible to 
have a parametric system to enter the number and locations 
of electrical boxes for each part. 
(High initial cost) 

If the variation is known before installation it is possible to 
have a parametric system to enter the number and locations 
of electrical boxes for each part. 
(High initial cost) 

Need of 
competence 

Inhouse Inhouse Inhouse 

Part of 
concept 

Yes No, but can be handled if planned for from start. No, but can be handled if planned for from start. 

Man-time 5 min Can be less than 1 min if planned for and implemented in a 
good way. 

Can be less than 1 min if planned for and implemented in a 
good way. 

3) Change from joining the 
plywood by nails to screws and 
change the distance between 
the join locations from 50 to 
100 mm. 

Method Change the goal variable distance in the goal join on 
plywood from 50 to 100 (utilizing the range function in C- 
MAS). 

Program the PLC to give order to the robot to select the 
screwdriver instead of the nail gun and tech new robot 
targets with 100 mm distance using nail gun signals.  

Program the MAS to give order to the robot to select the 
screwdriver instead of the nail gun and tech new robot 
targets with 100 mm distance using nail gun signals.  

Need of 
competence 

Inhouse External External expert 

Part of 
concept 

Yes No No 

Man-time 2 min 16 h 16 h 
4) Plug in a new process module 

with a robot equipped with a 
nail gun for concurrent and 
parallel nailing. 

Method Double the existing robot and nail tool agent and change 
the communication address to the new robot controller, 
download the standard robot program, calibrate the 
reference coordinate system, to the new robot, and adjust 
the min/max range of the robots. 

Copy the robot program and download it to the new robot 
for nailing a row and calibration of the reference coordinate 
system. Modifications in the PLC program to start 
communicating and giving orders to the new robot. 
Distribute and synchronize the two nail orders on the two 
robots. 

Copy the robot program and download it to the new robot 
for nailing a row, and calibration of the reference 
coordinate system. Duplicate the existing robot and tool 
agent and establish communication with the new robot. 
Distribute and synchronize the two nail orders on the two 
robots. 

Need of 
competence 

Inhouse External External expert 

Part of 
concept 

Yes No No 

Man-time 16 h 80 h 80 h  

A
. N
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4) Adjust the manufacturing rate by plugging in resources for concur-
rent and parallel execution. 

These four scenarios (1–4) were evaluated in four test cases, one test 
case for each scenario, see Table 6. 

6. Conclusion 

The use of graphical configurable goals and requirements diverse 
from the hardware implementation in C-MAS will simplify and shorten 
the time of changes in an existing automation system and minimize the 
need for competence compared to traditional PLC systems and plain 
MAS. Goals and process plans that are not directly connected to specific 
hardware during the design phase (digital configuration) will extend the 
flexibility of utilized hardware in a Plug & Produce. 

Programming of traditional PLC and robot systems is usually 
accomplished function by function. Each actuator or motion is 
controlled by pre-programmed logical conditions. Even a small modifi-
cation demands a programmer who not only has skills in the actual 
programming languages, additionally, the programmer must also un-
derstand the whole functionality of the application to be able to make 
changes. The reason for that is that change in one action often affects the 
conditions for other actions. Hierarchically structured systems as in this 
test case with a PLC controlling a robot give stable, viewable, and effi-
cient solutions but are sometimes hard to change since all functionalities 
are tailored to fit the actual application. Changes will often affect the 
communication between the PLC and robot, variables must be added in 
both the PLC and the robot controller. There was no need of introducing 
new communication variables in the proposed C-MAS due to standard-
ized agent communication and simple reusable skills. 

Plain multi-agent systems (MAS) are goal-oriented as C-MAS, have 
standardized agent communication, are flexible in finding solutions for 
different manufacturing situations, and are robust against disturbances. 
For example, a plain MAS system can be started as a barebone JADE 
project [41]. However, plain MAS is hard to change due to that the 
reference model architecture reflects the setup of resources. Expert 
competencies are required due to they are normally designed in an 
object-oriented program language distributed on autonomous and 
interacting agents. Plain MAS needs competencies that are hard to find 
by the manufacturing companies. 

Indeed, flexibility can be preprogrammed in a traditional control PLC 
and MAS if the variety of for example electrical boxes is known on the 
forehand. However, this kind of flexibility will cost extra initial engi-
neering time which will affect the investment cost, and will only handle 
foreseen need for flexibility. The flexibility in C-MAS is generic and must 
not be planned. Changes that were proposed in 

Table 6 were performed faster in C-MAS than in traditional PLC and 
MAS, except for the preplanned flexibility in numbers and locations of 
electrical boxes. 

The last test case, test case four (4) adding an extra robot to an 
existing application for concurrent use, is a huge task in a traditional 
PLC robot system that takes weeks of preparation, buying procurement 
among external companies, programming, and commissioning. Adding 
an extra robot in C-MAS takes a couple of days to do by the in-house 
workforce, following actions must be done the first time an extra 
robot is plugged in; download the standard robot program with general 
skills to the new robot, teach the reference coordinate system to be 
aligned to the origin robot, double the agent of robot and nail tool and 
change the IP-address to point at the new robot, and limit the operation 
zone of the robot by using range on the nail skill to avoid collisions. 
Except for the range, these actions are only necessary to do the first time 
the new robot is plugged in. A planning system that generically solves 
collisions and deadlocks is during development and will be presented in 
upcoming articles. 

Changes in C-MAS can be accomplished by existing personnel of a 
manufacturing company. Goals and variables are defined in a graphical 

configuration tool and the process plans are simple to design as they 
mainly consist of a list of skills distributed on abstract interfaces that will 
automatically be connected to interfaces of resource agents during 
runtime. 
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