
Robotics and Computer–Integrated Manufacturing 79 (2023) 102450

Available online 5 September 2022
0736-5845/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Full length Article

Customization and flexible manufacturing capacity using a graphical
method applied on a configurable multi-agent system

Anders Nilsson *, Fredrik Danielsson , Bo Svensson
University West, Engineering Science, Department of Production Systems, Gustava Melins gata 2, Trollhättan 461 32, Sweden

A R T I C L E I N F O

Keywords:
Industrial robotics
Process planning
Multi-agent systems
Plug & Produce

A B S T R A C T

This article proposes a Plug & Produce and goal-oriented configurable multi-agent system that admits adding and
removing resources to balance the manufacturing capacity without doing any digital reconfiguration or
reprogramming. To handle that a new part-agent strategy is developed and described. Goals are central in
designing autonomous multi-agent systems, possibilities to execute goals in parallel are desirable when the
process requirements admit concurrent use of resources. Also, a standardized graphical method, the sequence of
goals chart, is proposed to define and visualize parallel and sequential goals independently of available re-
sources. Premanufacturing of wooden houses belongs to one of many manufacturing industries that claim flexible
automation systems due to the high degree of customized products and a fluctuating market. A physical Plug &
Produce robot-based workstation was built up to verify the flexibility in altering capacity and adoption to
product modifications of a house wall section. Further, the simplicity of modifying the proposed configurable
multi-agent system was compared to more traditionally designed systems and plain multi-agent systems with
superior results. The flexibility is built into the proposed system by default as a part of the concept, simple
enough to be handled by existing in-house knowledge within manufacturing companies.

1. Introduction

Goal-oriented multi-agent control is one approach to handle flexible
and reconfigurable manufacturing systems. Goals are an important
aspect to be able to create autonomous agents. An autonomous agent
must have the possibility to decide not only how to achieve a goal, but
also which goal to select [1]. For parts that will be manufactured, a
state-oriented model is adopted implying that each agent associated
with a part tries to reach a final state by executing all assigned goals.
When all goals are finalized, the part is ready, and the implicit main goal
is fulfilled. Part is in this article defined as a part of a product or the
product itself that will be manufactured within the boundary of the
actual manufacturing system. Hence, a goal can only be fulfilled by
utilizing skills on resources within this boundary. To assist parts to reach
their goals, process plans exist that define skills needed to reach a spe-
cific goal. Process plans that solve goals are defined without specifying
resources, only desired skills, variables, and types of interfaces needed.
Types of interfaces is a list of abstract interfaces that are connected to
specific resource agents when needed. Hence, a resource agent is
selected after a negotiation process during runtime, based on the

requirements in the process plan. Process plans act to separate resources
from goals. This makes it possible to have several potential solutions in
the system and then let the autonomous agents select the most suitable
process plan depending on the current situation. This is a desirable
behavior within flexible manufacturing. Further, manually made pro-
cess plans are also desired since they will encapsulate knowledge about
how to make the best use of different manufacturing processes and the
relation to the quality, cost, safety, regulations, etc. Note, this article just
concerns controlling and scheduling a single cell or workstation on the
cell level as defined in [2]. Generic methods of planning orders, main-
tenance, deadlock avoidance, and collisions are not covered. The part is
assumed to have chosen the actual workstation in a previous stage,
collisions are avoided by limitations of workspaces, and the workstation
is deadlock-free due to its design, only one part is treated at the same
time.

Goals depict future desired states of the system. However, when it
comes to manufacturing, the sequence of goals is important, a new
method to configure and execute concurrent and parallel goals is pro-
posed in this article. It is applied in a goal-oriented, rule-based,
reasoning, and configurable multi-agent system (C-MAS). Plug &

* Corresponding author.
E-mail address: anders.nilsson@hv.se (A. Nilsson).

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

https://doi.org/10.1016/j.rcim.2022.102450
Received 7 December 2021; Received in revised form 6 July 2022; Accepted 29 August 2022

mailto:anders.nilsson@hv.se
www.sciencedirect.com/science/journal/07365845
https://www.elsevier.com/locate/rcim
https://doi.org/10.1016/j.rcim.2022.102450
https://doi.org/10.1016/j.rcim.2022.102450
https://doi.org/10.1016/j.rcim.2022.102450
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2022.102450&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

2

Produce systems, controlled by C-MAS, enable the possibility to rapidly
plug in and out resources to adapt to the actual situation. Resources
prepared with suitable skills can be plugged in without doing any digital
reconfiguration or reprogramming of the C-MAS. Parallel goals can
utilize resources concurrently in parallel. Indeed, if the number of re-
sources available is restricted, goals defined to be executed in parallel
will be executed in sequence instead due to a defined order of priority.
This approach enables possibilities to quickly avoid bottlenecks by
plugging in additional resources. Further, the relationship between
goals, i.e., if they are concurrent/parallel is defined in a graphical
sequence of goals chart, which is also proposed in this article. The
sequence of goals chart is a graphical tool for quick and easy visuali-
zation and editing of goals and requirements. Hence, the sequence of
goals chart enables manufacturing engineers to focus on the production
goals rather than detailed programming of the equipment. Variables
connected to each goal are instructively defined in the proposed
sequence of goals chart. Variables are treated as requirements for
selecting a suitable process plan to execute the goal, examples of vari-
ables are diameters, temperatures, and locations. This approach drasti-
cally simplifies and shortens the engineering time for the adoption of a
new or modified part or market fluctuations. Further, this type of
configuration, which avoids advanced programming, is a key enabler for
multi-agent-based flexible automation techniques within manufacturing
since it can be handled by existing competencies in the manufacturing
companies [3]. In traditional PLC-based automation systems or plain
multi-agent systems (MAS) are expert engineers required to implement
changes. Indeed, it is possible to addon flexibility to traditional solutions
when it is specified from the start of the project. The drawback of this
approach is that all possible future scenarios must be implemented based
on advanced guesses, such solutions will be too expensive to be
competitive. This article proposes digital configuration and design of
control systems based on the framework C-MAS for Plug & Produce [4,
5], extended with methods and strategies to execute, define, and visu-
alize parallel goals running on resources concurrently. A physical Plug &
Produce demonstrator was created to evaluate the flexibility and
simplicity of C-MAS compared to traditional PLC/robot systems and
plain MAS/robot systems. The Plug & Produce demonstrator worksta-
tion is built around a fixed industrial robot equipped with an automatic
tool changer and a tool stand with tools for placing, nailing, screwing,
and drilling, further on changeable modules containing an extra robot
for concurrent operations, buffers for studs, boards, and electrical boxes,
and fixtures for the final part. The results were compared to traditional
ways of handling flexibility, where foreseen flexibility is pre-
programmed in the system from start or achieved by reprogramming.
Foreseen flexibilities are hard to predict and are combined with high
initial cost, reprogramming is time demanding and thereby costly. The
simplicity and flexibility are built-in by default as a part of the concept in
the proposed C-MAS.

2. Related work

The amount of engineering time is extensive when it comes to soft-
ware development of traditional control-system even for a minor
adaption to modification of a product [6]. The use of a multi-agent
system is often proposed in the literature as the solution for an agile,
flexible, and adaptable control. Several publications on multi-agent
systems within the area of reconfigurable industrial discrete
manufacturing report promising results and show successful imple-
mentations in demonstrators in a wide range of applications. Many as-
pects such as over-complicated solutions, immature technologies, and
unpredictable performance make it a non-profitable solution [7]. Lack of
standards leads to ad-hoc designs and strategies just to solve rather
simple prototype cases. Even if the cases are simple the programming
jobs in available multi-agent platforms are complex and extensive,
expertise level of competence is needed to implement and maintain most
of the existing multi-agent applications [3]. There also exists a huge gap

between theoretical advantages and real advantages that have been
proved in practice [8]. Therefore, the majority of the industry still uti-
lizes centralized, hierarchical structured control systems with applica-
tion programs that are tailored function by function [9]. This approach
results normally in a high and predictable manufacturing rate at the
expense of flexibility and the ability to treat variations and disturbances.
Changes will often lead to a loss of production rate due to unbalanced
use of resources.

2.1. Goal-oriented theories

The importance of defining goals in relation to the performance of
the executed tasks is not new and goes back to a published work in 1968
by Locke [10], and the Goal Setting Theory [11] where complex goals
were divided into several smaller subgoals along the way to the final
goal. Three different domains of goal models in artificial intelligence
have been identified [12], from task-oriented which has the lowest level
of complexity to state-oriented and worth-oriented goal models. The
different domains affect the properties of agent communication. Agents
in a task-oriented domain, the lowest level, operating in a
non-conflicting operation environment, receive a list of jobs that must be
performed, the negotiations are mainly concerning the distribution of
jobs. Agents in a state-oriented domain have subgoals that specify a path
of states to an acceptable final state. The coexisting agents can both
compete and help each other to reach the final state. In the worst-case
one agent can hinder another agent to reach a certain state. The nego-
tiation aims to find schedules and joint plans, for the agents to achieve
the best common output in their progress to the final state. Agents in a
worth-oriented domain operate almost in the same manner as the agents
in a state-oriented domain, both have the final state of the whole system
as a goal. The difference is that the agents rate the acceptability of each
state in their striving for the next higher-rated state. The agent is aware
of the entire system and has a broad view of the common target strategy
and can accept a lower-rated state if it gains the common plan. However,
the lowest level of goal models, the task-oriented goal model, fits best to
the lowest levels in an industrial application, in the workshop, due to
better real-time properties and predictable behavior, state-oriented and
worth-oriented models fit better when it comes to planning and sched-
uling tasks [13]. The C-MAS technique used in this article concerns the
lowest level of industrial manufacturing but has a state-oriented
approach. C-MAS has several states and a final state when all states
(goals) are fulfilled, and a part is finalized. C-MAS are after all fast and
have a short response time due to short negotiation processes, but the
most critical real-time demanding tasks can be performed locally on
PLCs or robot controllers.

2.2. Planning of automated discrete manufacturing

Planning manufacturing tasks is complex, especially when there are
multiple operations, and optimization problems will often occur. One
example is the machining problem in [14] there most of the operations
have a sequence that starts with picking up a tool and performing the
machining job and then leaving the tool in the tool stand again. Time can
be saved by merging all the operations that use the same tool. It is not
always possible to organize all operations wise, some operations must be
fulfilled before others can initiate. Hence, a good planning strategy is
needed.

Planning strategies for MAS can rely on social laws [13]. The func-
tion can be illustrated by the right-hand rule, which proposes to give the
way to the traffic that is coming from the right. Social laws are used to
restrict the actions of each agent in relation to other agents [15]. The use
of social laws is fast in solving problems, but the solutions are not always
the most optimal and suitable for all systems.

Preconditions are a logical description of what criteria must be ful-
filled before an action can be initiated. Preconditions work well on ac-
tions that have a known deterministic effect and a known cost [16].

A. Nilsson et al.

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

3

Preconditions will help automatic planners [17] to make efficient and
functional plans of all possible sequences of actions from the initial state
to the final [18]. Well, known automatic planners are STRIPS [19], the
programming language PDDL [20], and MA-PDDL for multi-agents [21].
The cost of doing each action will control the planner to select the most
efficient sequence. The use of preconditions will work for mostly all
systems within discrete industrial manufacturing, but the effect of the
preconditions can be challenging to overview. C-MAS utilize manually
created sequences of goals charts, see Fig. 5, that will automatically
generate preconditions. The sequence of goals chart will enable possi-
bilities for the process planner to easily configure the process according
to efficiency, part design, and quality.

Several graphical methods for designing preconditions have been
identified in the literature. AND/OR graph [22] describes different al-
ternatives of serial and parallel sequences and in what sense a product
can be assembled. The best assembly plan is automatically selected ac-
cording to the weight of operations, how complex the assembly is, and
the stability of the subassemblies. The plan can be rescheduled online
during the operation, for example, a recovery from an unpredictable
deviation. This property of rescheduling has proven to be successful in
robot/human collaboration applications. In the work of Johannsmeier
et al. [23], a plan was automatically rescheduled if an operator went in
to make a certain work randomly to support and speed up the assembly
process. AND/OR graphs are suitable for assembly systems but are hard
to apply to processing operations. The magnitude of the AND/OR graphs
will explode with increased complexity.

Associated product net [24] derived from Petri net [25] are used to
describe in what way material will be processed and assembled into a
complete product. Pre-state, processing and post-state of each operation
are described. Associated product net is suitable in systems that both use
assembly and process operations. In similarity to the AND/OR graph, the
net will explode with increased complexity.

Liaisons [26] describe the priority relations among different parts in
an assembly. The rules are simple and describe the relations of all con-
nections between the parts, if one part must be mounted before another
or if it can be done in parallel. Liaisons remind of social laws but are
part-specific and have a formalized language. In industrial discrete
manufacturing, the planning task is often given from the disposition and
requirements of the product, fixturing, and tools. Given that a sequence
of standard procedures (SOP) is normally established. A graphical view
of an SOP based on liaisons theories is formally described in [27]. The
graph is similar to the sequential function chart (SFC) [28], which is
commonly applied for sequential actions in industrial control systems.
An SOP can easily be translated to a sequence of goals chart that is
proposed in this article as input to a C-MAS.

2.3. Reference system architectures

A reference system architecture describes relations between entities
in a system. Traditional technical descriptions describe technical details,
a reference system architecture describes the system at a higher
abstraction level, facilitates the design process, and makes it easier to
understand. Complicated tasks are in a multi-agent system divided into
several simpler tasks that are distributed among the agents. Each task
will be easy to handle but the overall system is complex and is expected
to be reconfigurable. Therefore, creating a good reference system ar-
chitecture is central to developing multi-agent systems [29]. The design
architecture will strongly influence the behavior of the system in the
aspect of reconfigurability and throughput performance. Efforts must go
to achieve a system that is flexible and still functional at the end of the
lifetime. There exist several reference architectures for intelligent
reconfigurable discrete manufacturing systems, an overview of refer-
ence system architectures for multi-agent systems will be given here.

One early and most referred architecture within manufacturing is
PROSA [30], based on product, resource, order, and staff holons
focusing on planning, supervision, and orchestration of the

manufacturing. Holons are in a similarity to agents autonomous and
cooperative distributed units of software. Each holon consists of an
information-processing part and a physical or logical part.
Manufacturing resources or products that will be manufactured are ex-
amples of physical parts and the logical part can be the logic for the
execution of orders. The product holon contains the process plan, bill of
material, and product specification. Resource holons represent the
manufacturing machines like robots, transport systems, operators, ma-
terial buffers, and other physical objects. The order holon is responsible
for that the product is manufactured according to the customer order.
Staff holons can be added to assist the basic holons with expert knowl-
edge and enable the possibility to implement centralized control of the
system as a whole. C-MAS which is proposed in this article has a similar
approach as PROSA that have products or part-agents containing process
plans.

Human collaboration will increase the flexibility of an automation
system. Adaptive holonic control architecture ADACOR [2] increases
both the flexibility within the automation and admits human collabo-
ration on several levels from the cell level on the shop floor up to the
enterprise level. The operational holons have direct contact with the
physical manufacturing resources and are controlled by the supervisor
holons which in turn collect information from the task holon. The su-
pervisor holon supplies the task holons and operator holons with an
optimized schedule plan. C-MAS permits collaboration but work are
ongoing on scheduling and safety issues within collaborations.

Plant automation based on distributed systems PABADIS [31], con-
sists of local mobile agents that are abstractions of manufacturing re-
sources and order agents that convert the customer order to a set of work
orders that then consist of a sequence of tasks. Each work order connects
to a mobile product agent that takes care of scheduling, manufacturing
resource allocation, and execution. PABADIS is operating on a higher
level than C-MAS which operates on the cell level. PABADIS has a plant
management agent as a supervisor of the system that combines the en-
terprise resource planning system with the resources on the cell level.

ADMARMS [24] and [32], axiomatic design of a multiagent recon-
figurable mechatronic system, addressing full heterogeneity of
manufacturing processes, resources, and interactions between re-
sources. ADMARMS are like C-MAS based on product agents and
resource agents. The resource agents are divided into transport agents
and reconfiguration agents. The transport agents are in turn divided into
several different agents among them transport, process, buffer, and
production process agents. ADMARMS divides the reference architec-
ture into five seamless transmittable stages where stage 1 is an abstract
level of design principles, stage 2 is the modeling of the reference ar-
chitecture on a conceptual level, stage 3 is the instantiation of the
implementation-specific architecture, stage 4 concerns the design of the
agent behavior and stage 5 the implementation of the hardware.

A comprehensive overview of different system reference architec-
tures is provided by [33]. Rockwell Automation (RA) presents a refer-
ence system architecture that was in origin based on just one order agent
and one agent for production plans. Product agents were introduced in
[34]. Logic programmable control (PLC) based on the industrial pro-
gramming standard IEC61131–3 [28] is used for control of the real-time
demanding physical processes. The product agent includes a knowledge
base of beliefs that are continuously improved over time. The concept
was enlarged with control strategies, the plan of intention, and
optimization-based planning [35]. Lack of central control of a
multi-agent system will often result in a loss of performance. The
introduction of a product agent that follows a process plan and has a
global view of the manufacturing process will increase the throughput.
Cooperation between product agents and utilization of the resources
must be further developed in RA to improve the throughput rate before
industrial acceptance. An IEC61131–3 structured text compiler, that is
implemented in C-MAS, enables possibilities to write skills in the same
standard as in the PLC world. It is also possible, like RA, to connect a PLC
for real-time implementations. Possibilities to write efficient PLC code in

A. Nilsson et al.

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

4

skills on resource agents and selections of the highest prioritized goals
and process plans with the lowest cost improve the throughput in C-MAS
to acceptable levels.

RDF [36] Resource Description Framework is a general method for
abstract semantic modeling of web resources realized by using the
resource-oriented web communication architecture (REST) [37]. These
web technologies are proven to work well implemented in a distributed
multi-agent-based manufacturing system that is flexible and dynamic
changeable on the fly. An RDF-based manufacturing system for
customized furniture is described in [38] where the ontology is written
in text and graphical user interfaces are used as in C-MAS. The
text-based ontology is mainly aimed at engineers and the graphical user
interfaces can be used by the customers that customize the product
remotely from home on a web browser [39].

SCEP (Supervisor, Customer, Environment, Producers) [43] is a
multi-agent framework for the planning of manufacturing activities.
Handled by a supervision agent that collaborates with manufacturing
order agents and machine agents that in turn collaborate with the
environment. The architecture was extended with a maintenance agent
SCEMP in [40] that enables efficient planning of maintenance activities.
A planner is necessary for optimizing manufacturing efficiency, and
avoiding deadlocks and collisions but is not covered in this article.
Except that C-MAS has no supervisor the concept of SCEP is close to
C-MAS.

C-MAS has adopted a reference system architecture that empowers
configurable agents that are all instances of the same executable code,
an approach that will simplify the reference architecture to part agents,
resource agents, and process plans [5], material agents were added in

this article. The reference architecture in Fig. 1 has a one-to-one relation
to the digital configuration. Distinguishes exist between part agents,
material agents, and resource agents. Part agents are active and have
goals and a strategy to solve the goals by using process plans. Material
agents and resource agents utilize skills on request from the part agent
through the process plans. Graphical and text-based tools are applied for
a digital configuration of agents. Resource agents will utilize other
resource agent skills if needed. The resource agent strategy is described
in [5].

3. System overview of C-MAS for Plug & Produce

Plug & Produce facilitates and shortens the time of reforming a
manufacturing system to fit actual situations with a quick plugin of for
moment the best-suited resources. Resources in the proposed Plug &
Produce system are mounted on top of process modules that have
standardized mechanical, energy, and media interfaces. An industrial
programmable logic controller (PLC) is typically located onboard each
process module to take care of initiation and communication to the
corresponding agent. The PLC can also be used for the execution of skills
that demand real-time operation. After connection, the PLC of the pro-
cess module will find and initiate a related agent by utilizing a mecha-
nism described in [4]. This article is based on the framework C-MAS for
Plug & Produce [5], extended with methods and strategies to execute,
define, and visualize goals that can execute concurrently in parallel.
Every physical resource needs a digital resource agent configuration
customized for the functionality of the actual resource. Abstract in-
terfaces permit connection and disconnection of resources without

Fig. 1. The C-MAS class diagram describing the reference architecture and ontology of the agent configuration.

A. Nilsson et al.

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

5

doing any digital reconfiguration. Abstract interfaces are mapped to
resource agents during runtime when needed after a negotiation among
the resource agents. If a copy of an earlier used physical resource is
made, a copy of the corresponding resource agent must be created
before use. The newly copied agent must be given a new name, id
number, and address to the PLC onboard the resource. The agents are
implemented on top of the Java Agent Development Framework (JADE)
and communicate and negotiate through JADE. Communication to
external units will go through communication protocols such as JSON
SOCKET RPC, OPC-UA, or REST depending on the connected unit.
Possibilities exist to add other communication protocols when needed.

3.1. The reference system architecture of C-MAS

What distinguishes C-MAS from other MAS is its architecture, all
agents in C-MAS are instantiated from one unified executable piece of
code and the digital configuration dictates the functionality and
behavior of the agents. Three types of instantiable agents coexist, part-
agents, material agents, and resource agents. The configuration data is
stored in objects, see the class diagram in Fig. 1, which is a general
ontology aiming to be generic and applicable for all discrete
manufacturing automation applications. Two kinds of configurable
process plans exist, (i) process plans that specify how to achieve goals
running on part agents and (ii) process plans that specify how to execute
skills. The only instantiable objects are part agents, material agents,
resource agents, and process plans, all other objects, written in italic, are
abstract and not instantiable, only the most important methods are
included in the class diagram. Part agents contain the goals and are
global for the process plans that solve the goals, part agent variables are
thereby shared between process plans for goals. Data can also be stored
in variables locally on resource agents and distributed on agent in-
terfaces. Skills and process plans are stored in an execution string that
consists of IEC61131–3 structure text program code [28]. The part agent
strategy is designed such that when goals initiate it starts to search for
suitable process plans, and process plans select skills via interfaces on
resource agents. These connections are considered loosely and are
pointed out by dashed dependency lines.

A new agent will be instantiated when a physical component or
resource is introduced to the system. When an instance is made of an
agent it starts by downloading its configuration from a database. The
configuration includes all the properties of that specific agent and makes
that agent unique in the system. After instantiation, the desired
configuration is assigned to the agent. Agents are divided into two
different categories, active and passive:

- Active agents (part-agents) will initiate actions based on goals,
strategies, and available resources skills to change its own or other
agent states.

- Passive agents (material and resource-agents) will not initiate any-
thing by themself. All actions performed by a passive agent must first
be initiated by another agent through the exposure of skills or by an
external event.

Process-oriented applications are normally performed on a part of
raw material that will be refined to a final part. The part-agent repre-
sents the part from the initial raw state to the finalized state. Assembly
processes, on the other hand, consist of materials that will be assembled
to a final part. That means that the part-agent must be considered
imaginary until the part is assembled and finalized. It is not necessary to
model materials used in an assembly process as agents, but passive
material agents are introduced in this article. The reason for modeling
materials is that it enables the possibility to have agents carrying in-
formation about the specific material, location, and skills knowing how
the material is supposed to be assembled or treated.

3.2. Part-agent strategy for executing concurrent and parallel goals

This section will describe in detail the proposed configurable multi-
agent system (C-MAS). The configuration is a set of data that include
information about resources, parts, goals, process plans, skills, etc. There
are two main configurable types (i) agents and (ii) process plans, see the
C-MAS class diagram in Fig. 1, which describes the ontology of the agent
configuration. Each type represents an object with attributes and a hi-
erarchy with relations. Process plans are introduced to assist agents to
solve a specific manufacturing task, a goal. A process plan is designed by
process engineers to reflect a suitable solution concerning quality, cost,
etc. All process plans Π in C-MAS are defined and included in the set Π =

ΠG ∪̇ ΠS, where ΠG is a set of process plans used to achieve goals and
ΠS is a set of process plans for executing skills. A single process plan π is
defined as π ∈ Π and contains a name and a cost and a string variable,
execution, that contains a sequence of skills, a set of variables V, and a set
of abstract interfaces U. For a part-agent p a process plan πg describe a
possible solution on how to reach a specific goal g among all goals of a
part agent Gp. A process plan πg are general and shared among all part
agents P where a single part p ∈ P. Note, there might exist several
alternative process plans πg ∈ Πg to achieve the same goal g. For each
goal g ∈ Gp for a part agent p, there must exist at least one process plan πg

in ΠG. Resource agents R that are tight connected to the hardware
execute the goals Gp. A process plan for a skill πs ∈ Πs on a resource
agent r consists of an executable sequence of skills s containing refer-
ences to locally available actions/skills and required skills on other
resource agents r ∈ R.

To be able to reach a higher degree of flexibility, with interchange-
able resources, there is a need to avoid specifying the specific resourceto
execute a specific skill. For that purpose, all required skills s on resources
R are defined through abstract (unassigned) interfaces U during the
design phase. These abstract interfaces U are then mapped to real in-
terfaces I on resource agents R when needed during runtime. Each ab-
stract interface u, where u ∈ U, consists of a tuple of variables,

u = 〈Su,Vu〉,

where Su is a set of desired skills and Vu is a set of desired variables. Each
real agent interface if , where if ∈ I, also consists of a tuple of variables,

if =
〈
Sif ,Vif , bookedif

〉
,

where Sif is a set of skills s, Vif is a set of variables v and the variable
bookedif indicates if the interface if and its resource agent r are booked
for use or not. The set of skills Su and variables Vu is used during the
search process to map unassigned abstract interfaces u to real agent
interfaces if by matching the variables of Su and Vu against Sif and Vif .
Each variable v ∈ Vif consists of a tuple of variables,

v = 〈namev, lowerBoundv, upperBoundv, valuev〉,

where the lowerBoundv and upperBoundv forms a range of the valuev that
is valid for the interface mapping. Each skill s ∈ Sif consists of the
following tuple of variables,

s = 〈names, πs〉,

where the names is the name of the skill, πs is a process plan to execute
the skill which also contains a cost to utilize the skill s and an execution
string. The interface if that has skills with the lowest cost will be
selected. The order in which goals are achieved is important and is
determined by associated preconditions. A part-agent p contains a set of
goals Gp. Each goal g ∈ Gp is defined as a tuple of variables,

g =
〈
nameg,Vg, assignedg, fulfilledg, precondg, priorityg

〉
,

where the variable nameg is the name of the goal, Vg are a set of variables
associated with the goal, assignedg indicates if the goal g is assigned to a

A. Nilsson et al.

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

6

process plan πg that aims to fulfill the goal g. Further, fulfilledg is true
when the goal is achieved and precondg controls when the process plan of
a goal πg can be initiated. Hence, a specific goal g can only be achieved if
the associated precondg is true, which is a logical expression that eval-
uates to true or false. If available resources R are limited and more than
one goal is possible to execute the priorityg are used to prioritize one of
the goals g. How a part-agent p reach a specific goal g must be defined in
a process plan πg that solves the goal. The part-agent p needs a strategy
of how to select g in Gp and find the best πg to use. To be able to handle
concurrent and parallel goals a new strategy for the part agents was
developed in this article. A simplified overview of the executive struc-
ture of one part-agent p is given in Fig. 2. Further, the part-agent strategy
is described in pseudocode in Algorithm 1. An overview of the pseudo-
code will follow here: The main loop selects a goal g that is possible to
start and have the highest priority, priorityg, and then finds the process
plan πg that solves the goal with the lowest cost. The reach goal thread,
select and book an interface if ∈ I that are associated to a resource-agent
r that have the required skills s. A resource-agent r is able tobook other
resource agents via a process plans for skills πs and a agent interface if if
needed to fullfill a skill s. The resource strategy are further described in
[5]. The fork function in the main loop enables the possibility to run
goals concurrently in parallel and is therefore central in the part-agent
strategy. The fork function creates a new parallel thread for each goal
g that are active. When a process plan πg has been started a new g and a
πg can be selected to start in parallel. To minimize the risk of deadlocks
the booked resources are not un-booked until the goal is fulfilled. This
approach works well if each goal is short and contains a well-limited
number of associated operations. Collisions between for example two
concurrently working robots are avoided by defining a range between
the interface variables lowerBoundv and upperBoundv.

3.3. The sequence of goals chart

An important requirement of the industry is to have stable control-
lable manufacturing processes that guarantee the throughput and
quality of produced parts. Therefore, manually created sequences of
goals, one for each kind of part, and manually created process plans for
solving the goals are proposed. Technically, the easiest way of defining
sequences of goals is to define preconditions for each goal which has
proven to be a tough task and is hard to expose and overview. The
intention is that a process engineer employed in a manufacturing com-
pany should be able to edit the sequence of goals chart and the process
plans without programming knowledge. For these reasons, a graphical
sequence of goals chart was introduced in this article as a part of the C-

MAS configuration tool, see Fig. 5, that generates preconditions and
levels of priority for the goals based on the design. Preconditions and
priority can be found in Algorithm 1 as precondgand priorityg. For
sequential goals, the precondition is that the former goal in the chart is
fulfilled fulfilledg=true. Parallel goals will be given the same pre-
conditions as they can initiate in parallel at the same time. If there exist
more parallel goals than resources that can achieve the goals, the pri-
ority variable of the goal will be used. Parallel goals in the sequence of
goals chart will, by default, be given higher priority than following
goals. The sequence of goals chart gives an overview of the
manufacturing steps/goals by reading the sequence of goals from the top
to the bottom, with the first goal on top. The two vertical and parallel
lines indicate that the underlying goals can be executed concurrently in
parallel if multiple resources exist. Symbols and functionality are
derived from [27], which gives a formal explanation of functions and
symbols. The variables that are related to each goal are aggregated to the
goal in the chart as requirements of the goal and are then matched and
assigned to variables defined on process planes that solve the goals.

4. The industrial house wall prefabrication case

A test case of prefabricated wall sections of wooden houses was
selected by the authors together with a reference group consisting of
industry representatives from the branch of prefabricated wooden
houses, due to the high demand for flexibility when it comes to auto-
mation. In general, this industrial sector cannot utilize automation due
to the issue of flexibility. The two main flexibility drivers are (i) highly
customized products and (ii) market fluctuations. Prefabricated houses
are regularly customized even if the house model is chosen from a cat-
alog of standard houses, i.e., a customer wants adaptations. An adap-
tation can help to fit the actual building spot and requirements of the
people that will live in the house. In addition, almost all wall sections in
each building are similar but unique due to their location in the house.
Further, this industrial sector is very sensitive to the overall health of the

Fig. 2. Overview of execution structure for selection and executing of con-
current and parallel goals.

Algorithm 1
Part-agent strategy including a fork function that handle concurrent and parallel
goals.

A. Nilsson et al.

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

7

economy and balancing is a big problem. A downscaled section of a
house wall is chosen in this test case. Even if downscaled, relevant in-
dustrial equipment and solutions were addressed in the demonstrator.
The house wall was modeled as a part agent named wall in the described
C-MAS control system, see Fig. 3. This test case represents an assembly
process which means that the wall does not physically exist until it is
assembled.

Fig. 4 visualizes the Plug & Produce demonstrator workstation that
was built up for this test case scenario. The workstation consists of one
industrial robot arm equipped with an automatic tool changer, a tool
stands with different tools for placing, nailing, screwing, drilling, and
three pluggable process modules, one fixture module for the part wall,
one automatic buffer module for studs, and one buffer module for
plywood, drywall, and electrical boxes.

Agent identification requires early attention when it comes to
modeling in the C-MAS digital configuration. What components and
resources are identified as agents are crucial for the overall behavior of
the system concerning functionality, flexibility, and reconfigurability.
At least one part-agent must exist, in this case, the wall. To simplify only
one kind of part exists at a time and no material agents have been used,
all materials in this assembly process are standardized. Hence, only the
wall itself is customized regarding the selection of joining processes, and
numbers and locations of electrical boxes.

All included process modules, tools, and robots were modeled as
resource agents, see Table 1.

For an efficient system, a good rule is to define all goals in parallel
that can be executed concurrently independent of available resources.
That enables the later introduction of new resources, e.g., to increase the
manufacturing rate by adding an extra robot, see the sequence of goals
chart in Fig. 5. The first goals are to place two studs in a fixture as a base
and frame for the wall, both studs can be placed at the same time but
must be placed before the plywood board, which should be placed upon
the studs. The plywood shall then be joined to the studs by two rows of
nails that also can be done in parallel. On top of the plywood shall
drywall be placed and joined by two rows of screws, also in parallel. The
option, range, in C-MAS is in this case used for the selection of nails or
screws, nails are selected when there is a short distance between the join
locations else screws are selected. Two holes will then be made, and an
electrical box will be placed in each hole. The two holes for the electrical
boxes can also be made in parallel but as soon as one hole is drilled an
electrical box can be mounted in that hole.

Each goal must match at least one process plan solving that goal.
There exists one process plan intended for the goal PlaceStud that takes
one variable, location. The pick location will be provided by a skill
FindStud executed on the stud buffer-agent, see Table 2. The two skills
Pick and Place will be executed on a matching gripper tool-agent that in
turn needs a robot-agent to execute the motion, see Table 3. which de-
scribes the process plan for Pick and the variable pickLocation. Skills
are defined in the PLC programming language structure text (ST) spec-
ified in IEC61131–3 [28], see Table 4. It is also possible to define a range
of variables to select a suitable process plan. For nailing the variable

distance must be in the range of 10 to 60 mm , see Table 5.

5. Validation

The Plug & Produce demonstrator, see Fig. 4, of the industrial house
wall prefabrication case, was utilized in the validation. Three different
systems were evaluated: C-MAS, PLC, and MAS all three as a supervisor
to an industrial robot.

• C-MAS was configured by the graphical, sequence of goals chart,
together with digital configurated process plans and skills, described
in chapter 4.

• The PLC was programmed by a traditional approach in the standard
programming languages for industrial control systems IEC61131–3

Fig. 3. The part wall and included materials.

Fig. 4. Plug & Produce demonstrator workstation of the industrial house wall
prefabrication case.

Table 1
Parts and resources that are modulated as agents.

Agents Explanation

Wall Part-agent wall that have the goals.
robotIRB4400 Resource-agent for the Industrial robot IRB4400 with

automatic tool changer equipment, skills to do motions and
put vacuum, triggers and tool changer on and off.

wallFixtureModule Resource-agent for the process-module that fixating the
studs of the wall, skills to keep track of the wall

studBufferModule Resource-agent for the process-module including a PLC
that controls an automatic stud buffer that push out one
stud at the time and signal available studs, skills to provide
studs and keep track of the pick location of the stud.

boardsAndBoxModule Resource-agent for the process-module that store
plywood, drywall, and electrical boxes, has skills to keep
track of number and locations of boards and boxes.

toolStand Resource-agent for the tool stand carrying all robot-tools,
skills to keep track of available tools and the corresponding
locations.

vaccumPlate Resource-agent for the pick and place tool for studs,
plywood, and drywall, skills to do place operations.

vaccumCup Resource-agent for pick and place tool for electrical boxes,
skills to mount electrical boxes.

nailgun Resource-agent for the automatic nail-gun with magazine
for nails, skills to nail and keep track of available nails.

screwdriver Resource-agent for the automatic screwdriver with
magazine for screws, skills to screw and keep track of
available screws.

driller Resource-agent for the drilling machine that drills the hole
for electrical boxes, skills to drill Ø70mm holes.

robotModule Resource-agent for the process module containing a robot
for parallel and concurrent use

A. Nilsson et al.

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

8

[28] utilizing a sequential function chart (SFC) and combinatoric
logic for each function.

• The MAS was implemented in object-oriented JAVA, distributed on
agents by using the agent framework Java Agent Development
Framework JADE [41] which is commonly used by scholars.

• The robot program was in all three cases implemented in the ABB
Robotics programming language RAPID [42].

The implementations were done by the authors and the result was
validated by the authors together with external resources and a refer-
ence group for this project. The reference group consists of representa-
tives from different companies, system builders, and manufacturers
from the industry of prefabricated wooden houses.

The three setups; C-MAS, PLC, and MAS were all acting as supervi-
sion systems to control the robot. General functionalities (skills) such as
a move to a location and open/close gripper were implemented in the
robot when C-MAS controls the robot. In the case of PLC and MAS, the
robot was implemented in a traditional manner using complete robot
routines, for example, one routine for picking up a stud and placing it on
the fixture and moving the robot back to its home position. The reason is
that as much as possible is normally implemented in the robot, which
makes the robot easier to handle when all reference coordinate systems
(work objects, tool objects) and locations are there. It is possible to jog
the robot back and forth along the path and around TCPs and along
workpieces, which facilitates maintenance, restart, and exception
handling. C-MAS is integrated close to the robot to get rid of handling
issues that occur when general skills are used by letting resource agents
take care of coordinate systems and locations and download them to the
robot when needed. These methods will be explained further in up-
coming articles. The comparison was in all three cases done on fully up
and running systems and the functionality of the three systems was the
same.

The purpose was to validate the flexibility scenarios of (i) highly
customized products and (ii) market fluctuations. But also, the
simplicity of doing changes to the system by the existing in-house
personnel to avoid dependency on external competencies. Examples of
external competencies can be PLC, robot programming, and expert
competence in agent object-oriented programming, which are further
discussed in [3]. The man-time is an important factor and will directly
reflect the cost of doing modifications to the system and as a measure-
ment of the agility of the company against the market. When external
companies are involved, the time will automatically increase because
specification work must be done as a basis for purchase procurements
and quotations, and project meetings when several competencies are
involved.

The flexibility and simplicity of performing changes were evaluated
and compared by the following scenarios:

1) Modification of part-design of an existing part.
2) Continuously changing part-design, one-of manufacturing.
3) Select manufacturing process depending on part requirements.

Fig. 5. Sequence of goals chart, visualizing a sequence of goals and goal var-
iables. The final implicit goal is a finalized part Wall.

Table 2
Process plan for the goal PlaceStud (variable location).

(* Find location of pickable stud in the stud buffer using the abstract interface aStudBuffer
*)

aStudBuffer.FindStud();
(* Run the skill pick to pick up the stud from stud buffer. Pick location is provided by the stud

buffer agent *)
aGripper.Pick(pickLocation:= aStudBuffer.PickStudLocation);
(* Run the skill place to place the stud on the fixture. Place location is provided from the

goal variable location *)
aGripper.Place(placeLocation:= goal.location);

Table 3
The process plan Grasp that turns the vacuum on for gripping and wait until the
vacuum is established.

(* Output signal connected to de valve trough the abstract interface aRobot that turns the
vacuum on *)
aRobot.qxVacuumOn:= TRUE;
(* Predefined function WaitUntil will wait until the signal is true *)
WaitUntil(robot.ixVacuumEstablished);
(* Turns the vacuum signal off *)
aRobot.qxVacuumOn:= FALSE;

Table 4
Process plan for the skill Pick (variable pickLocation).

(*Move the robot to 100 mm above the pick location using the abstract interface aRobot *)
aRobot.MoveTo(targetLocation:= pickLocation, zOffset:=100.0);
(*Move the robot to the pick location *)
aRobot.MoveTo(targetLocation:= pickLocation, zOffset:= 0.0);
(*Grasp the stud *)
aRobot.Grasp();
(*Move the robot to 100 mm above the pick location *)
aRobot.MoveTo(targetLocation:= pickLocation, zOffset:=100.0);

Table 5
Process plan for goals Join by nails (variables startLocation, endLocation and
distance range 10 to 60 mm).

(* Nails a row of nails if the distance is within 10 to 60 *)
aJoinTool.Nail(startLocation:= goal.startLocation, endLocation:= goal.
endLocation, distance <10..60>:= goal.distance);

A. Nilsson et al.

RoboticsandComputer-IntegratedManufacturing79(2023)102450

9

Table 6
Comparison between C-MAS few simple robot skills, traditional supervising PLC and robot systems, and supervising MAS and robot systems with complete robot programs.

Test case on scenarios 1 – 4 Aspects C-MAS configuration PLC and Robot programming MAS and Robot programming

1) Increase the number of
electrical boxes from two to
three and give the new box a
location as a planned and
scheduled action

Method Add a new goal and location in parallel with the origin
goals for electrical boxes using the sequence of goals chart.

Modify the PLC program to include the order of the new
electrical box. Create new routines in the robot and connect
to new communication tags. Teach new targets in the robot
program.

Modify the MAS code with a new goal to give the order of a
new electrical box. Create new routines in the robot and
connect to new communication tags. Teach new targets in
the robot program.

Need of
competence

Inhouse External External expert

Part of the
concept

Yes No No

Man-time 5 min 16 h 16 h
2) The number of electrical boxes

and locations variate from one
part to another

Method Define goals and locations for electrical boxes for each part
using the sequence of goals chart.

If the variation is known before installation it is possible to
have a parametric system to enter the number and locations
of electrical boxes for each part.
(High initial cost)

If the variation is known before installation it is possible to
have a parametric system to enter the number and locations
of electrical boxes for each part.
(High initial cost)

Need of
competence

Inhouse Inhouse Inhouse

Part of
concept

Yes No, but can be handled if planned for from start. No, but can be handled if planned for from start.

Man-time 5 min Can be less than 1 min if planned for and implemented in a
good way.

Can be less than 1 min if planned for and implemented in a
good way.

3) Change from joining the
plywood by nails to screws and
change the distance between
the join locations from 50 to
100 mm.

Method Change the goal variable distance in the goal join on
plywood from 50 to 100 (utilizing the range function in C-
MAS).

Program the PLC to give order to the robot to select the
screwdriver instead of the nail gun and tech new robot
targets with 100 mm distance using nail gun signals.

Program the MAS to give order to the robot to select the
screwdriver instead of the nail gun and tech new robot
targets with 100 mm distance using nail gun signals.

Need of
competence

Inhouse External External expert

Part of
concept

Yes No No

Man-time 2 min 16 h 16 h
4) Plug in a new process module

with a robot equipped with a
nail gun for concurrent and
parallel nailing.

Method Double the existing robot and nail tool agent and change
the communication address to the new robot controller,
download the standard robot program, calibrate the
reference coordinate system, to the new robot, and adjust
the min/max range of the robots.

Copy the robot program and download it to the new robot
for nailing a row and calibration of the reference coordinate
system. Modifications in the PLC program to start
communicating and giving orders to the new robot.
Distribute and synchronize the two nail orders on the two
robots.

Copy the robot program and download it to the new robot
for nailing a row, and calibration of the reference
coordinate system. Duplicate the existing robot and tool
agent and establish communication with the new robot.
Distribute and synchronize the two nail orders on the two
robots.

Need of
competence

Inhouse External External expert

Part of
concept

Yes No No

Man-time 16 h 80 h 80 h

A
. N

ilsson et al.

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

10

4) Adjust the manufacturing rate by plugging in resources for concur-
rent and parallel execution.

These four scenarios (1–4) were evaluated in four test cases, one test
case for each scenario, see Table 6.

6. Conclusion

The use of graphical configurable goals and requirements diverse
from the hardware implementation in C-MAS will simplify and shorten
the time of changes in an existing automation system and minimize the
need for competence compared to traditional PLC systems and plain
MAS. Goals and process plans that are not directly connected to specific
hardware during the design phase (digital configuration) will extend the
flexibility of utilized hardware in a Plug & Produce.

Programming of traditional PLC and robot systems is usually
accomplished function by function. Each actuator or motion is
controlled by pre-programmed logical conditions. Even a small modifi-
cation demands a programmer who not only has skills in the actual
programming languages, additionally, the programmer must also un-
derstand the whole functionality of the application to be able to make
changes. The reason for that is that change in one action often affects the
conditions for other actions. Hierarchically structured systems as in this
test case with a PLC controlling a robot give stable, viewable, and effi-
cient solutions but are sometimes hard to change since all functionalities
are tailored to fit the actual application. Changes will often affect the
communication between the PLC and robot, variables must be added in
both the PLC and the robot controller. There was no need of introducing
new communication variables in the proposed C-MAS due to standard-
ized agent communication and simple reusable skills.

Plain multi-agent systems (MAS) are goal-oriented as C-MAS, have
standardized agent communication, are flexible in finding solutions for
different manufacturing situations, and are robust against disturbances.
For example, a plain MAS system can be started as a barebone JADE
project [41]. However, plain MAS is hard to change due to that the
reference model architecture reflects the setup of resources. Expert
competencies are required due to they are normally designed in an
object-oriented program language distributed on autonomous and
interacting agents. Plain MAS needs competencies that are hard to find
by the manufacturing companies.

Indeed, flexibility can be preprogrammed in a traditional control PLC
and MAS if the variety of for example electrical boxes is known on the
forehand. However, this kind of flexibility will cost extra initial engi-
neering time which will affect the investment cost, and will only handle
foreseen need for flexibility. The flexibility in C-MAS is generic and must
not be planned. Changes that were proposed in

Table 6 were performed faster in C-MAS than in traditional PLC and
MAS, except for the preplanned flexibility in numbers and locations of
electrical boxes.

The last test case, test case four (4) adding an extra robot to an
existing application for concurrent use, is a huge task in a traditional
PLC robot system that takes weeks of preparation, buying procurement
among external companies, programming, and commissioning. Adding
an extra robot in C-MAS takes a couple of days to do by the in-house
workforce, following actions must be done the first time an extra
robot is plugged in; download the standard robot program with general
skills to the new robot, teach the reference coordinate system to be
aligned to the origin robot, double the agent of robot and nail tool and
change the IP-address to point at the new robot, and limit the operation
zone of the robot by using range on the nail skill to avoid collisions.
Except for the range, these actions are only necessary to do the first time
the new robot is plugged in. A planning system that generically solves
collisions and deadlocks is during development and will be presented in
upcoming articles.

Changes in C-MAS can be accomplished by existing personnel of a
manufacturing company. Goals and variables are defined in a graphical

configuration tool and the process plans are simple to design as they
mainly consist of a list of skills distributed on abstract interfaces that will
automatically be connected to interfaces of resource agents during
runtime.

CRediT authorship contribution statement

Anders Nilsson: Writing – original draft, Visualization, Investiga-
tion, Methodology, Formal analysis, Software. Fredrik Danielsson:
Conceptualization, Supervision, Validation, Software. Bo Svensson:
Writing – review & editing, Validation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This work was supported by the Region Västra Götaland (VGR) Dnr.
RUN 2018-00476 and the Swedish Agency for Economic and Regional
Growth ID: 20201948 through the project Tillverka i trä.

References

[1] S. Zhiqi, Goal-oriented Modeling for Intelligent Agents and Their Applications,
Nanyang Technological University Library, Nanyang, 2005.

[2] P. Leitão, A.W. Colombo, F.J. Restivo, ADACOR: a collaborative production
automation and control architecture, IEEE Intell. Syst. 20 (1) (2005) 58–66.

[3] A. Nilsson, F. Danielsson, M. Bennulf, B. Svensson, A classification of different
levels of flexibility in an automated manufacturing system and needed competence,
in: Towards Sustainable Customization: Bridging Smart Products and
Manufacturing Systems. CARV 2021, Aalborg, 2021.

[4] M. Bennulf, F. Danielsson, B. Svensson, Identification of resources and parts in a
Plug and Produce system using OPC UA, in: 29th International Conference on
Flexible Automation and Intelligent Manufacturing (FAIM), Limrick, 2019.

[5] M. Bennulf, F. Danielsson, B. Svensson, B. Lennartsson, Goal-oriented process plans
in a multiagent system for Plug & Produce, IEEE Trans. Ind. Inf. 17 (4) (2021)
2411–2421.

[6] Z. Pan, J. Polden, N. Larkin, S. Van Duin, J. Norrish, Recent progress on
programming methods for industrial robots, Robot. Comput. Integr. Manuf. 28 (2)
(2012) 87–94.

[7] V. Marík, D. McFarlane, Industrial adoption of agent-based technologies, IEEE
Intell. Syst. 20 (1) (2005) 27–35.

[8] S. Karnouskos, P. Letiao, L. Ribeiro, A.W. Colombo, Industrial agents as a key
enabler for realizing industrial cyber-physical systems: multiagent systems entering
industry 4.0, IEEE Ind. Electron. Mag. 14 (3) (2020) 18–32.

[9] L. Monostori, J. Váncza, S.R. Kumara, Agent-based systems for manufacturing,
CIRP Ann. Manuf. Technol. 55 (2) (2006) 697–720.

[10] E.A. Locke, Toward a theory of task motivation and incentives, Organ. Behav.
Hum. Perform. 3 (2) (1968) 157–189.

[11] G.P. Latham, E.A. Locke, A theory of goal setting & task performance - self-
regulation through goal setting, Acad. Manag. Rev. (1991) 212–247. ⋅ April 1991.

[12] J.S. Rosenschein, G. Zlotkin, Designing conventions for automated negotiation, AI
Mag. 15 (3) (1994) 29–46.

[13] M. de Weerdt, B. Clement, Introduction to planning in multiagent systems,
Multiagent Grid Syst. 5 (4) (2009) 345–355.

[14] Q. Yang, D.S. Nau, J.A. Hendler, Merging separately generated plans with
restricted interactions, Comput. Intell. 8 (4) (1992) 648–676.

[15] Y. Shoham, M. Tennenholtz, On social laws for artificial agent societies: off-line
design, Artif. Intell. 73 (1–2) (1995) 231–252.

[16] G. Frances, M. Raḿırez, N. Lipovetzky, H. Geffner, Purely declarative action
representations are overrated: classical planning with simulators, in: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence
(IJCAI-17), Melbourne, 2017.

[17] D.S. Weld, An introduction to least commitment planning, AI Mag. 15 (4) (1994)
27–61.

[18] D. Borrajo, S. Fernández, Efficient approaches for multi-agent planning, Knowl. Inf.
Syst. 58 (2018) 425–479.

[19] R.E. Fikes, N.J. Nilsson, STRIPS: a new approach to the application of theorem
proving to problem solving, Artif. Intell. 2 (3–4) (1971) 189–208.

A. Nilsson et al.

http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0001
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0001
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0002
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0002
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0003
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0003
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0003
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0003
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0004
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0004
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0004
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0005
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0005
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0005
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0006
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0006
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0006
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0007
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0007
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0008
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0008
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0008
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0009
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0009
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0010
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0010
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0011
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0011
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0012
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0012
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0013
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0013
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0014
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0014
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0015
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0015
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0016
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0016
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0016
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0016
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0017
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0017
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0018
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0018
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0019
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0019

Robotics and Computer-Integrated Manufacturing 79 (2023) 102450

11

[20] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
D. Wilkins, PDDL -The Planning Domain Definition Language, Yale Center for
Computational Vision and Control, Yale, 1998.

[21] D.L. Kovacs, A multi-agent extension of PDDL3.1,, in: Proceedings of the 3rd
Workshop on the International Planning Competition (IPC), ICAPS-2012 (eds
Seilva JR and Bonet B), Sao Paulo, 2012.

[22] L.S. Homem de Mello, A.C. Sanderson, AND/OR graph representation of assembly
plans, IEEE Trans. Robot. Autom. 6 (1990) 188–199 (ISSN 1042-296X).

[23] L. Johannsmeier, S. Haddadin, A hierarchical human-robot interaction-planning
framework for task allocation in collaborative industrial assembly processes, IEEE
Robot. Autom. Lett. 2 (1) (2017) 41–48.

[24] A.M. Farid, L. Ribeiro, An axiomatic design of a multiagent reconfigurable
mechatronic system architecture, IEEE Trans. Ind. Inform. 11 (5) (2015)
1142–1155.

[25] T. Murata, Petri nets: properties, analysis and applications, IEE Xplore 77 (4)
(1989) 541–580.

[26] Y. Xing, J. Sun, Assembly sequence planning of automobile body components
based on liaison graph, Assembly Autom. 27 (2) (2007) 157–164.

[27] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian, P. Falkman,
K. Åkesson, Sequence planning for integrated product, process and automation
design, IEEE Trans. Autom. Eng. 7 (4) (2010) 791–802.

[28] International Electrotechnical Commission, IEC International Standard IEC
61131–3: Programmable Controllers, Part 3: Programming Languages, IEC, 2003.

[29] E. Crawley, O. de Wreck, S. Eppinger, C. Magee, J. Moses, W. Seering, J. Schindall,
D. Wallace, D. Whitney, The influence of architecture in engineering systems, Eng.
Syst. Monogr. (2004).

[30] H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, P. Peeters, Reference
architecture for holonic manufacturing systems: PROSA, Comput. Ind. 37 (3)
(1998) 255–274.

[31] A. Lüder, J. Peschke, T. Sauter, D. Diep, Distributed intelligence for plant
automation based on multi-agent systems: the PABADIS approach, Prod. Plann.
Control 15 (2) (2004) 201–212.

[32] L. Ribiro, Cyber-physical production systems’ design challenges, in: IEEE 26th
International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 2017.

[33] P. Vrba, P. Tich́y, V. Mǎŕık, K.H. Hall, R.J. Staron, F.P. Maturana, P. Kadera,
Rockwell automation’s holonic and multiagent control systems compendium, IEEE
Trans. Syst., Man, Cybern., Part C (Applications and Reviews) 41 (1) (2011) 14–30.

[34] I. Kovalenko, K. Barton, D. Tilbury, Design and implementation of an intelligent
product agent architecture in manufacturing systems, in: 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Cyprus,
2017.

[35] I. Kovalenko, D. Tilbury, K. Barton, The model-based product agent: a control
oriented architecture for intelligent products in multi-agent manufacturing
systems, Control Eng. Pract. 86 (2019) 105–117.

[36] P.J. Hayes, P.F. Patel-Schneider, RDF 1.1 Semantics, The World Wide Web
Consortium W3C, 2014.

[37] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. Gabarró Vallés, R. Van de
Walle, Functional descriptions as the bridge between hypermedia APIs and the
Semantic Web, in: Proceedings of the Third International Workshop on RESTful
Design, Lyon, 2012.

[38] A. Ciortea, S. Mayer, F. Michahelles, Repurposing manufacturing lines on the fly
with multi-agent systems for the web of things, in: International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Engineering Multiagent Systems,
Stockholm, 2018.

[39] S. Mayer, D. Plangger, F. Michahelles, S. Rothfuss, UberManufacturing, a goal-
driven collaborative industrial manufacturing marketplace, in: Proceedings of the
6th International Conference on the Internet of Things, Stuttgart, 2016.

[40] G. Bencheikh, A. Letouzey, X. Desforges, Scheduling of production and
maintenance activities using multi-agent systems, in: IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA), Turin,
2018.

[41] F. Bellifemine, G. Rimassa, JADE Programmer’s Guide, TILab S.p.A., Boston, 2001.
[42] A.B.B. Robotic, Technical reference manual: RAPID instructions, functions and

data types, ABB Robot. Prod. (2014). Västerås.
[43] B. Archimede, T. Coudert, A multi-agent scheduling approach for the flexible

manufacturing production systems, IFAC Proc. Vol. 31 (32) (1998) 143–148.

Anders Nilsson was born at Flatön, Orust, Sweden in 1965. He
received B.Ed. from Gothenburg University, Sweden in 2006, B.
Sc. in mechatronics and M.Sc. degree in Robotics and Automa-
tion from University West, Trollhättan, Sweden, in 2014 and
2015. He was Electro and Automation Maintenance Technician
at SAAB Automobile 1984 to 1989. Project Engineer at KG-
Process AB 1990–1991. R&D Engineer at Binar Elektronik AB
1992–2006. Lecturer in Electro and Automation at Nils Eric-
sonsgymnasiet 2006–2008. Since 2009 - Lecturer and Research
Engineer at University West, where he now is working toward
the Ph.D. degree in Production Technology with a focus on
Multiagent Technology used in Manufacturing Systems.

Fredrik Danielsson was born at orust, Sweden, in 1972. He
received the Ph.D. degree in mechatronics from De Montfort
University, Leicester, U.K., in 2002. From 2003 to 2015, He
was the Head of the Robot and Automation education at
advanced level with University West. Since 2008, he has been
the Head of the Flexible Automation Research Group at the
Department of Engineering Science, University West. He has
co-authored of more than 70 peer reviewed papers in inter-
national journals and conferences. His current main research
interests include flexible automation, multi-agent control sys-
tems, virtual commissioning, AI and robot systems.

Bo Svensson was born in Mariestad, Sweden, in 1959. He
received the M.S. degree in electrical engineering in 1984 and
the Ph.D. degree in automation in 2012 from Chalmers Uni-
versity of Technology, Gothenburg, Sweden. He was a Design
Engineer with SAAB Space AB from 1984 to 1987. From 1987
to 1994, he was a System Engineer with SAAB Automobile AB.
Since 1994, he has been a Senior Lecturer with the Department
of Engineering Science, University West, Trollhättan, Sweden,
with teaching and research. His current research interest in-
cludes flexible industrial automation, plug and produce, mul-
tiagent system control, human-robot collaboration, safety, and
simulation-based optimization.

A. Nilsson et al.

http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0020
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0020
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0020
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0021
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0021
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0021
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0022
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0022
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0023
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0023
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0023
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0024
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0024
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0024
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0025
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0025
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0026
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0026
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0027
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0027
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0027
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0028
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0028
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0029
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0029
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0029
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0030
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0030
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0030
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0031
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0031
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0031
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0032
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0032
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0033
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0033
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0033
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0034
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0034
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0034
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0034
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0035
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0035
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0035
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0036
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0036
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0037
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0037
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0037
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0037
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0038
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0038
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0038
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0038
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0039
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0039
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0039
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0040
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0040
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0040
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0040
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0041
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0042
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0042
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0043
http://refhub.elsevier.com/S0736-5845(22)00132-6/sbref0043

	Customization and flexible manufacturing capacity using a graphical method applied on a configurable multi-agent system
	1 Introduction
	2 Related work
	2.1 Goal-oriented theories
	2.2 Planning of automated discrete manufacturing
	2.3 Reference system architectures

	3 System overview of C-MAS for Plug & Produce
	3.1 The reference system architecture of C-MAS
	3.2 Part-agent strategy for executing concurrent and parallel goals
	3.3 The sequence of goals chart

	4 The industrial house wall prefabrication case
	5 Validation
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

