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Abstract

Increased environmental awareness is driving the manufacturing industry towards novel ways of energy reduction to become sustainable yet stay
competitive. Climate and environmental challenges put high priority on incorporating aspects of sustainability into both strategic and operational
levels, such as production scheduling, in the manutacturing industry. Considering energy as a parameter when planning makes an already existing
highly complex task of production scheduling even more multifaceted. The focus in this study is on inverse scheduling, defined as the problem
of finding the number of jobs and duration times to meet a fixed input capacity. The purpose of this study was to investigate how scheduling can
be formulated, within the environment of discrete event simulation coupled with reinforcement learning, to meet production demands while
simultaneously minimize makespan and reduce energy. The study applied the method of modeling a production robot cell with its uncertainties,
using discrete event simulation combined with deep reinforcement learning and trained agents. The researched scheduling approach derived
solutions that take into consideration the performance measures of energy use. The method was applied and tested in a simulation environment
with data from a real robot production cell. The study revealed opportunities for novel approaches of studying and reducing energy in the
manufacturing industry. Results demonstrated a move towards a more holistic approach for production scheduling, which includes energy usage,
that can aid decision-making and facilitate increased sustainability in production. We propose a conceptual framework for scheduling for
minimizing energy use applying discrete event simulation as an environment for deep reinforcement learning.
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1. Introduction

Environmental awareness is driving manufacturing
companies towards novel ways of reducing energy [1,2]. With
challenges in climate and the environment, it is of the highest
priority to incorporate sustainability into strategic and
operational work in manufacturing industry [3]. Considering
energy when planning shop floor production makes the already
existing highly complex task of scheduling even more
multifaceted [4]. Thus, there is a need to find methods for more
sustainable production planning and control as the traditional
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scheduling objectives i.e., meeting due dates and satisfying
customers, must be extended to minimizing energy use and
greenhouse gas emissions [5]. The way a production schedule
meets its objectives is evaluated through performance
measurements [6]. While makespan or maximum completion
time 1.e., the time at which the last task of a schedule is finished,
is a major performance measure to be minimized, other indices
like throughput, stability, robustness, and energy use may also
be tried to be optimized in parallel with e.g., makespan. Thus,
shaping scheduling as a multi-objective optimization problem
which is not guaranteed to have a feasible solution. Moreover,
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some of the performance measures may move in the opposite
direction of each other, i.e., optimization of one may require
actions that recede others. For instance, to increase stability,
idle or slack times are typically inserted into schedules, which
in turn reduces energy efficiency of the production [7]. Further,
production is affected by disturbances e.g., variations in
processing times, machine breakdowns, or fluctuations in
demands, meaning scheduling has a stochastic nature [8]. There
are several operations research (OR) approaches to solve
scheduling problems, e.g., linear programming [6]. However,
for realistically sized scheduling problems with multiple
performance measures and uncertainties, other methods may be
applied. E.g., methods within the range of artificial intelligence
(AI) and machine learning (ML) such as reinforcement learning
(RL) can be used in scheduling. RL has its roots in dynamic
programming and for RL data is not provided in advance, rather
machines collect it through interaction [9]. One of the main
contributions of RL is that it can solve stochastic decision-
making problems even if the way the environment changes is
unknown [9]. It is therefore useful to create a simulation
environment and to train the RL agents inside that environment.
A common tool for addressing improvements of production
flows is discrete event simulation (DES), which can be
extended to consider and measure energy [10].

The aim of this study is to propose a conceptual framework,
for production scheduling that incorporates uncertainties,
applying discrete event simulation as an environment combined
with deep reinforcement learning and trained agents, focusing
the performance measures energy use and makespan.

In the following sections related work, concerning the
possibilities of shop floor scheduling applyving DES and RL
coupled with measuring energy usage, is addressed.
Subsequently, the development of the conceptual framework is
described followed by results, discussion, and conclusion.

2. Related work

This section describes related research in the areas of RL and
DES in relation to production scheduling. Next, incorporation
of energy use as a performance measure is addressed.

2.1. RL and DES for production scheduling

Production planning and control (PPC) and job shop
scheduling (JSS) in particular, are considered difficult and often
are so called NP-hard problems [11]. Thus, approaches using
RL have been applied, for example a multi-agent RL
framework is presented to solve scheduling [12]. Further, DES
can be used as a simulation environment for RL for training the
RL agents. An example is a DES framework developed in
Python to simulate an autonomous cart fleet, where the model
includes stochastic parameters such as passengers and cart
behavior [13]. Another example is the creation of a stochastic
DES model in Matlab and its use as an environment to interact
with an agent defined in Matlab [14]. Both examples show that
DES enhances the environment as it is easy to tune parameters
and test courses of events.

2.2. Production scheduling and energy use

Sustainability is increasingly being focused on many aspects
and areas in manufacturing today. Though, modelling energy
can be challenging, as the nature of energy should be defined,
then accordingly a measurement can be done. How to integrate
this measurement into a simulation is the next challenge. An
overview of different types of simulation (continuous, discrete)
is presented and the advantages and limitations of each
approach is outlined in relation to modelling and energy
measurement [15]. There are examples of how to optimize
robotic path planning while also measure energy use
[16,17,18,19]. In addition to the need for energy optimal robot
trajectories, the significance of having energy optimal
production schedules has been increasingly studied in OR [20].
One example is a simulation-based energy scheduling of robot
stations with a job shop setup where it is possible to identify
slack and to adjust the robot operation times to reduce energy
adjusting the schedule while keeping the same total cycle time
[16]. Further, data requirements for DES of energy use in
productions systems has been investigated by [10]. Another
example of applying DES when studying energy use is focused
on scheduling of a gantry crane in a car engine factory [21]. A
DES of energy consumptions for a manufacturing production
line has been investigated by [22]. A model applying genetic
algorithm to minimize energy use and enhance schedule
efficiency has been developed for flexible manufacturing
systems [23]. Energy-efficient rescheduling in job shop
problems has been studied by [24] where a memetic algorithm
is proposed for finding a schedule that minimizes energy use.
Game theory is applied to consider the environmental impact of
real-time multi-objective flexible job shop scheduling [25].

As exemplified PPC is complex and difficult to solve
optimally and many approaches have been studied, often with
single performance measures of e.g., meeting due dates or
minimizing makespan. The complexities and uncertainties of
PPC mean challenges of development of RL as a tool for multi-
objective scheduling. Further, though there are examples of
studying environmental factors in relation to scheduling, the
performance measure of energy use needs attention [23]. It is
imperative for manufacturing industry to address energy in
many areas and adding energy use as a parameter to minimize,
makes scheduling harder. Thus, this area of research needs
further attention for increased sustainability.

3. The development of the conceptual framework

While scheduling is extensively addressed by OR and
heuristic methods, both paradigms face challenges when the
size of the problem grows, and uncertainties are present.
Moreover, they fail as real time controllers at the presence of
production disturbances. Here we explain the proposed
approach ot developing a conceptual framework for studying a
1JS problems with the performance measure of energy use. The
framework combines RL and agents with a DES environment.
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3.1. The Case and DES as a simulation environment for RL

As complexity of a system to be optimized increases, a
simulation model can be desired for interacting with the RL
agent. Simulation results could then be analyzed to convert
actions into inputs of the simulation and observations as
measurements taken from the simulation. DES allows to easily
set and obtain values from a model, as it is based on events
occurring in the system [26], and it makes it possible to conduct
experiments that cannot be performed on the real systems. It
also allows for the possibility to model random variations
present in most manufacturing systems. In this work
Tecnomatix Plant Simulation DES software was applied.

The DES model is built with data from a real case of a
robotic production cell in automotive industry. The case
encompasses a production cell consisting of three robots and
seven processes i.e., four operative processes, Spot Welding I,
Gluing, Hemming and Spot Welding II, and three transport
processes. Further the model includes three buffers, one for
modelling the infeed, one for modelling the outfeed of the
robotic cell, and one buffer to model the main line. The concept
proposed is to create a DES model that can include parameters
such as failure rates and varying processing times, coupled with
RL. The purpose of this is to design and implement a proof of
concept using DES as a simulation environment for RL, which
in the next step can be updated with data incorporating
uncertainties from a real production environment.

3.2. Energy measurement and signatire

Energy signatures of robotics operations are extracted
following the approach introduced in [27]. The method
suggests conducting a series of experiments and measure
energy use levels when the same operation is repeated with
different speeds. The energy profile, parameterized by
operation time, is then approximated by a piecewise polynomial
function satisfying a set of conditions extracted from the
empirical data. In this study, data were collected using a
commercial simulation software, ABB RobotStudio, where an
operation is repeatedly simulated with different speeds. A
fourth order polynomial function is used as an approximator to
parametrize the performance curve with nominal operation time
and nominal energy. The energy profile is discretized into four
regions: fastest, fast, optimal, and slow. The discretized form is
used to introduce the notions of operation code and schedule
code. The schedule code is created based on the logic i.e., the
number of jobs is added as the first bit to the array, and resulted
number is interpreted in base 10. Assume that the number of
jobs are 8, the schedule code can be explained as following:

scheduleCode = [n]obs,opBitom, opBitOG,opBitgH,opBitowz]

scheduleCode = [8,1,2,0,3] = (81203)44

These codes become useful for representing capacity curves
of production processes. Moreover, RL agents working with
discrete state or action spaces can be trained using discretized
form of the energy signature. To discretize the energy profile,
we select five discretization points resulting in four intervals.
One may increase the resolution by introducing more points,
but four regions were enough for the purpose of analysis in this
study. In Fig. 1 can be seen that also an operation bit is assigned
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Fig. 1. Discretized energy signature

to each operation, starting from 0 for the first interval. The
operation bits are assigned depending on different the
operations, for example Spot Welding I, Gluing, Hemming and
Spot Welding II.

3.3. Inverse scheduling

The desire to meet production rate while minimizing energy
is formulated as an optimization problem according to inverse
scheduling. Meaning a reverse scheduling problem where an
input demand is specified as a desired capacity. The capacity is
defined as number of jobs divided by the makespan. Thus, a
combination of number of jobs and process duration times
should be found to meet that. The capacity threshold € is defined
as the difference between capacity demand k and schedule
capacity c¢. The schedule capacity ¢ is obtained by inverse
scheduler. For a given capacity demand and capacity threshold
pair (k,€), we define the set of all schedules realizing k bounded
by € as the solution set, and denoted by Sk, see Fig. 2.
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Fig. 2. Solution set associated to a capacity demand, capacity threshold pair.

Every schedule within Skxe has the same capacity, but a
different combination of number of jobs n and duration times
D. Thus, by changing n and D will result in different solutions
sets 1.e., Ske = Ske(n,D). Therefore, we need to find the best
combination of number of jobs and duration times (n.,D-), in
such a way that energy use is minimized over the elements of
Ske (D), (n.,D.)=argminS,.(n,D) . Every schedule
within the solution set proposed by the inverse scheduler should
minimize the makespan for its selected number of jobs and
duration times. The different combination of function value Si
= Ske(n,D) is plotted with red, green and black color response
in Fig.2 to find the solution set.

3.4. RL, Agent, and Artificial Neural Network

In RL an agent takes actions and interacts with an
environment to maximize the reward [9]. Therefore, there are
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two main components in a RL problem, agent, and
environment. The agent’s goal is to find the optimal scheduling
to the problem. Hence, the agent considers policy mapping
observations received from the environment (state of the
system) into actions to be applied on the environment, and a RL
algorithm improves the policy considering the reward received
from actions taken. Further, we combine reinforcement
learning with Artificial Neural Networks (ANNs) as function
approximators. This is called deep reinforcement learning. The
RL agent has two major components, the policy, and the
learning algorithm. The policy is implemented as a neural
network function approximator using Matlab, which sends the
desired schedule [n,D] to the scheduler in the Matlab
environment, which is connected to the DES model of the Plant
Simulation software. The agent is trained for PPC, where the
trained RL agent is used to create tools for scheduling
(production planning) and rescheduling (production control).
The two applications, namely the RL agent and the operation
code scheduler, are created with the help of Matlab App
Designer. The inverse scheduler is interpreted as a decision
maker, and the proposed training is a learning process founded
by trial and error, which is based on random numbers, one class
of learning methods for RL. For the inverse scheduling
problem, since the state space is decided to be continuous, it is
no longer feasible to model the policy as a simple look-up table.
For this purpose, we have employed neural networks as
function approximators. See Fig. 3 for an overview of the
proposed RL framework for inverse scheduling.

Agent Environment
[n,D,7,E] : [n, D]
! Policy update
RL
Algorithm
—0.1(f.e2 + fred)
S1008 | Reward Observation
L b

T

Fig. 3. Proposed RL framework for mverse scheduling.

The agent was trained employing Deep Q-Network (DQN)
algorithm. The DQN algorithm is a critic-based RL method. It
has a value function Q that estimates the long-term reward v €
E the agent could collect by applying actions A € Sa while
being in state S € Ss. Like other value-based algorithms, the
policy is implicit in DQN. Assuming that the critic is
parameterized byf,. i.e. v Q(S.4: 8,) DQN algorithm adjusts
elements of % in such a way that the agent can collect
maximum possible reward. While training, DQN agent
explores the action space using epsilon greedy approach. This
allows the agent to make a balance between exploitation and
exploration. Further, DQN suggests having a target critic
Q'(S,A; H_Qr) with the same structure and parametrization as Q.
It also collects past experiences of the agent in an experience
buffer and sample from that to tune 8. In depth explanation of
the algorithm can be found in [28]. The environment has two
major objectives. The first one is to update its state as a response
to received actions, and to report the new state back to the agent.
The second one is to generate the reward signal in each iteration
of training. The reward generator inside the environment is
responsible for that.

3.5, Overview of the conceptual framework

The goal is to with the same capacity find a schedule that
minimizes energy use, but increasing the number of jobs and
increasing the makespan. To do that, the agent is allowed to
select different number of jobs (within a defined range) and
different durations for the four main processes (machines).
Transport operations have fixed process times. These different
number of jobs and durations will lead to different schedules. A
scheduler in the RL environment finds the schedule that
minimizes the energy use for a fixed capacity, given the number
of jobs and process times, and sends it to the DES model. The
energy was discretized so that every process had four different
possible values: fastest, fast, optimal and slow. The RL
algorithm presented in the agent can choose between these four
values (operations codes) for every process, which results in
different energy use. Knowing the energy profile for each
operative process, it can be integrated into the DES model, so
that every time an operative process is completed, the energy is
computed. Every schedule results a value of the energy use,
which can be measured from the simulation model. The agent
is given a reward based on the error in the production rate i.e.,
how far the scheduled production rate is from the demanded
production rate, and on the error in the energy use i.e., how far
the energy use is from the optimal energy use, assumed to be
known by the energy signatures. See Fig. 4 for an overview of
the conceptual framework.
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Energy

Fig. 4. Overview of the conceptual framework.
4. Results and analysis

The simulation experiment setup applied data from a real
scenario from a real case in the automotive industry.
Experiments were run in the simulation environment, according
to the conceptual framework setup. Tests were run to compare
the current schedule of the cell, its makespan and energy use, to
the improved schedule found by the agent to fulfil the same
demand production rate. Given a production rate demand, the
frained agent will get the schedule that meets the demand, as
close as possible, and with close to minimal energy use. The
current schedule of the cell, composed by seven machines, and
assumed to be at the highest possible speed for every operation
is given in Fig. 5. The makespan for one cycle is 736 seconds,
three jobs are produced every cycle, and the energy use per job
produced is 100.99 kJ. Knowing the number of jobs and
makespan of the schedule, the production rate can be obtained
according to:

production rate = number of jobs/makespan = 3/736
=40,76e — 4
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Fig. 5. Original job shop schedule where the x-axis shows time in
seconds, and the y-axis is number of the machines.

This production rate can thereafter be used as input for the
trained agent, and a schedule meeting that production rate with
close to minimal energy use will be found. This new schedule
is presented in Fig. 6 and see Table 1 for an overview of the
experimental results. The makespan for that schedule per cycle
is 1748 seconds, and the number of jobs produced is seven.
Calculating the production rate according to:

production rate = 7/1748 = 40,04e — 4
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Fig. 6. Schedule found by the trained RL Agent, where the x-axis shows time
in seconds, and the y-axis is number of the machines.

Table 1. Comparison between current schedule and the one by RL Agent.

Performance Current schedule at Best schedule found by
Index factory the RL Agent
Number of
. n=3 n=7
jobs
Makespan T =736 sec T = 1748 sec
. 1 1
Capacity ¢ =0.00407 (—) ¢ = 0.00400 (—)
sec sec
dy 68 (sec) dyy 68 (sec)
Operation 7= dg 60 (sec) 7= dg | _ | 82 (sec)
Times dy 54 (sec) dy 116 (sec)
dyyy 150 (sec) dy, 150 (sec)
Operation _ _
Code opCode = [0,0,0,0] opCode = [0,1,2,0]
E E—10099(k]) E—9431(kl)
nergy = 5 ]O_b = . ]O_b

Looking at the values, we notice that the production rate is
not the same, thus we calculate the absolute error accordingly:
error = |demand — current| = [0.0040761 — 0.0040046|

=0.715e - 4
The error is very small, converted into jobs/hour it is
equivalent to 0.26 jobs/hour. Therefore, it can be accepted as a

valid solution. Studying the energy use for this schedule we
find that it is 94.3 kI per unit produced. Compared to the initial
schedule this corresponds to a reduction of 6.6 percent. It is
observed that the agent managed to save energy by 6.6 percent
through slowing down the second and third operations. It is
demonstrated that it was possible for the agent to find a
schedule that produces at the same rate but with lower energy
use. After gathering results, the agent optimized schedule for
1073 different given demands, Fig. 7. shows the energy use for
each possible demand computed by the agent. The demand is
expressed in parts per hour, the red marks indicate the possible
demands to meet by the agent exactly. The blue curve shows
the tendency. Note that the demand is only available between 3
and 15 parts/hour. Based on the process times applied as the
fastest and assuming the energy signatures, the demand that can
be met, while moving towards energy optimization, range
between these values.
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Fig. 7. Energy-capacity diagram found by the RL agent.
5. Discussion

The results show that RL could find solutions for the
described scenario, nevertheless, using reinforcement learning
for this application adds complexity to the problem. Defining a
reward signal that converges to the solution is a difficult task,
and there are plenty of parameters to tune such as, the training
parameters, the agent configuration (neural networks), etc.
Further, deployment of the agent (using the trained agent) is not
easy, especially when neural networks are used for training. The
motivation to use RL combined with DES to solve a scheduling
problem was both to be able to be responsive to uncertainties
and to have a trained agent to be used as a controller, being able
to reschedule a cell if needed. The result demonstrates the
concept of applying DES in combination with RL. Thus, the
next part of extending the research intends to incorporate
variations and uncertainties into the DES models. Additional
extensions of the research could for one be to use the full
potential of DES so that the simulation of the cell for every
episode could be done for several days, meaning that the agent
could realize the long-term effect of its actions. Further, the
accuracy used for energy measurements can be a subject of
discussion, as the assumption that all energy signatures
followed the same pattern was made. For this purpose, it was
enough, as the idea was to prove that the concept works, and
that energy can be reduced if an agent can tune process times to
meet a given demand.
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6. Conclusion

Inverse scheduling is proposed to formulate scheduling as a
control problem. In this paradigm, capacity and energy error
signals are tried to be minimized by adjusting number of jobs
and duration times as reference signals. The problem is
translated into the framework of RL, and an agent is trained to
solve it. The result is a trained policy that can meet a capacity
demand while minimizing makespan and energy use. The
motivation to use DES in a reinforcement learning framework
was to integrate uncertainties and failures to the model, so that
the energy consumption and makespan would not simply be
obtained by a mathematical equation. Thus, the model could
include the possibilities of variations and hence simulate a more
realistic production environment. High complexity and
uncertainties in PPC make multi-objective scheduling
challenging, thus this study address this through outlining a
conceptual framework of scheduling applying discrete event
simulation as an environment for deep reinforcement learning.
The study revealed opportunities for novel approaches of
studying and reducing energy in manufacturing settings. The
results demonstrate a move towards a more holistic approach
for production scheduling, which includes energy usage, that
can aid decision-making and facilitate increased sustainability
in manufacturing.

Future work intends to extend this research to incorporate
uncertainties and variations occurring during manufacturing
processes. In many real manufacturing settings, there are for
example uncertainties in processing times and machine failures.
By using DES these uncertainties can be included, so that the
RL agent gets trained within an environment closer to reality.
The described case did not yet include uncertainties. However,
with the application of DES as the simulation environment in
the proposed concept, we will extend and explore this approach
further in the tuture.
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