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Abstract 

Increased environmental awareness is driving the manufacturing industry towards novel ways of energy reduction to become sustainable yet stay 
competitive. Climate and envirom11ental challenges put high priority on incorporating aspects of sustainability into both strategic and operational 
levels, such as production scheduling, in the manufacturing industry. Considering energy as a parameter when planning makes an already existing 
highly complex task of production scheduling even more multifaceted. The focus in this sn1dy is on inverse scheduling, defined as the problem 
of finding the number of jobs and duration times to meet a fixed input capacity. The purpose of this study was to investigate how scheduling can 
be fornmlated, within the enviromnent of discrete event simulation coupled with reinforcement learning, to meet production demands while 
sinmltaneously minimize makespan and reduce energy. The study applied the method of modeling a production robot cell with its uncertainties, 
using discrete event simulation combined with deep reinforcement learning and trained agents. The researched scheduling approach derived 
solutions that take into consideration the perfonnance measures of energy use. The method was applied and tested in a simulation environment 
with data from a real robot production cell. The study revealed opportunities for novel approaches of studying and reducing energy in the 
manufacturing industly. Results demonstrated a move towards a more holistic approach for production scheduling, which includes energy usage, 
that can aid decision-making and facilitate increased sustainability in production. We propose a conceptual framework for scheduling for 
minimizing energy use applying discrete event simulation as an environment for deep reinforcement learning. 
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1. Introduction

Environmental awareness is driving manufacturing 

companies towards novel ways of reducing energy [1,2]. With 

challenges in climate and the environment, it is of the highest 

priority to incorporate sustainability into strategic and 

operational work in manufacturing industry [3]. Considering 

energy when planning shop floor production makes the already 

existing highly complex task of scheduling even more 

multifaceted [ 4]. Thus, there is a need to find methods for more 

sustainable production planning and control as the traditional 

2212-8271 © 2022 The Authors. Published by Elsevier B.V. 

scheduling objectives i.e., meeting due dates and satisfying 

customers, must be extended to minimizing energy use and 

greenhouse gas emissions [5]. The way a production schedule 

meets its objectives is evaluated through performance 

measurements [6]. While makespan or maximum completion 

time i.e., the time at which the last task of a schedule is finished, 

is a major performance measure to be minimized, other indices 

like throughput, stability, robustness, and energy use may also 

be tried to be optimized in parallel with e.g., makespan. Thus, 

shaping scheduling as a multi-objective optimization problem 

which is not guaranteed to have a feasible solution. Moreover, 
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6. Conclusion

Inverse scheduling is proposed to fo1mulate scheduling as a 

control problem. In this paradigm, capacity and energy e1Tor 

signals are tried to be minimized by adjusting number of jobs 

and duration times as reference signals. The problem is 

translated into the framework of RL, and an agent is trained to 

solve it. The result is a trained policy that can meet a capacity 

demand while minimizing makespan and energy use. The 

motivation to use DES in a reinforcement learning framework 

was to integrate uncertainties and failures to the model, so that 

the energy consumption and makespan would not simply be 

obtained by a mathematical equation. Thus, the model could 

include the possibilities of variations and hence simulate a more 

realistic production environment. High complexity and 

uncertainties in PPC make multi-objective scheduling 

challenging, thus this study address this through outlining a 

conceptual framework of scheduling applying discrete event 

simulation as an environment for deep reinforcement learning. 

The study revealed opportunities for novel approaches of 

studying and reducing energy in manufacturing settings. The 

results demonstrate a move towards a more holistic approach 

for production scheduling, which includes energy usage, that 

can aid decision-making and facilitate increased sustainability 

in manufacturing. 

Future work intends to extend this research to incorporate 

uncertainties and variations occurring during manufacturing 

processes. In many real manufacturing settings, there are for 

example uncertainties in processing times and machine failures. 

By using DES these uncertainties can be included, so that the 

RL agent gets trained within an environment closer to reality. 

The described case did not yet include uncertainties. However, 

with the application of DES as the simulation environment in 

the proposed concept, we will extend and explore this approach 

further in the future. 
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