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Abstract 
Industrial Internet of Things (IIoT) and the increasing role of real-time analytics (RTA) data are currently 
transforming industry and shop floor work. Manufacturing industry needs to adapt accordingly and 
implement systems solutions for rich data analysis to achieve increased business value. However, a data-
driven implementation of RTA applications, often launched as “Plug&Play” solutions, often lacks both 
insights into shop floor work and the alignment to user perspectives. This paper focuses both on the 
technical implementation and the deployment of RTA applications from a design-in-use perspective and 
therefore we argue for congruence between a data-driven and a user-driven approach. The main findings 
reveal how configuration and implementation of RTA applications interplay with users’ work operations 
that further extends current IIoT layered models by aligning architectural levels with user and business 
levels. The main contribution is presented as lessons learned to inform sustainable and innovative 
implementation for increased business value for data-driven industry.  

Keywords: Industrial internet of things, IIoT, Layered-modular architecture, Real time analytics, Data-
driven industry. 

Introduction 
Today, digital transformation is on the agenda for all types of organizations, with a promise of increased 
proficiency in businesses, more effective production and future competitiveness through utilizing data to a 
larger extent (Andriole, 2017). This is especially true in manufacturing industry. New digital solutions, such 
as industrial internet of things (IIoT) and data analytics systems are in various ways disrupting earlier 
technological structures with an increased amount of incoming data (Chen, Chiang, & Storey, 2012; 
Gilchrist, 2016; Itabashi-Campbell et al., 2013; Tripathi, 2019). Together, these changes create leaps that 
are rather unique in industrial contexts. Industry 4.0 and digital manufacturing through IIoT has 
accelerated in interest and has become one of the most hyped concepts embedded in the industrial 
revolution (Gilchrist, 2016; Lasi et al., 2014; McAfee et al., 2012). IIoT technologies and analytics 
applications are promised to analyze real-time data for data-driven effective operations and production 
while assisting everyday decision-making. Consequently, these changes have the potential to drastically 
improve business performance and business value (Brynjolfsson & McAfee, 2014; Brynjolfsson & Mitchell, 
2017; McAfee et al., 2012). Moreover, IIoT probes transformations on all levels within the manufacturing 
industry, initiating changes in which data-driven business capacity and values are seen as the main drivers 
to reach effective production (De Carolis et al., 2017). These promises remain to large extend unverified and 
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there are gaps in the literature regarding: i) suitable IIoT analytics network design as too much focus has 
been put on the sensing architectures for industry networks (Al-Fuqaha, 2015; Verma et al., 2017), and 
additionally ii) the lack of user-studies aligning IIoT and analytics systems to make sense of data and derive 
knowledge (Abbasi, Sarker, & Chiang, 2016; Williams, Hardy, & Nitschke, 2019). In order to make sense of 
real-time analytics (RTA) applications that generate massive IIoT data, we argue for the need to integrate 
data-driven analytics with a user-driven approach, in line with (Trinks & Felden, 2017; Williams et al., 
2019). In this paper, we pursue RTA following Verma et al. (2017, p.1460) definition,“…as the analysis of 
every segment of the massive IoT data at the right moment in order to obtain business value and drive 
intelligent decisions.”  
The velocity, volume, veracity and variety of data used for data-driven values and capabilities are illustrated 
in exponential growth and the in-coming data is often messy, somewhat unstructured and thereby hard to 
comprehend by humans (Verma et al., 2017). Due to the aforementioned exponential growth of data, 
questions related to the usefulness of data, and how RTA applications are introduced, designed, configured 
and implemented remain unanswered (Verma et al., 2017). It is not enough to collect and process vast 
amounts of data as the volume will not automatically lead to better work floor routines and further precise 
actions in organizations (Davenport, 2018; Iftikhar et al., 2019). Instead, there are practice-based gaps in 
how to collect specific sets of data that can be visualized and used for work practice that rely on real-time 
analytics data (Davenport, 2018; Trinks et al., 2017). Additionally, there is scare knowledge of how to utilize 
real-time analytics data on various organizational levels including shop floor practices (Iftikhar et al., 2019). 
Hence, the understanding of real-time analytics is still in its infancy and there is a need for further in-depth 
analysis of how RTA can be used in real-world settings in order to achieve business value and support shop-
floor production work. In practice, handling the data and knowing how to effectively use RTA for data-
driven industry, triggers concern of usability at the shop floor. Especially, when software suppliers state 
that their RTA applications can be set up as “Plug&Play” software packages, where accessories and services 
offer instant connection, and the machine will recognize the accessory and automatically generate the 
correct configurations.  
The empirical findings presented in this paper are derived from a design ethnography of introducing an 
RTA “Plug&Play” application in a manufacturing company in Sweden. From this setting, we describe how 
the implementation of real-time analytics of data is played out in practical terms. The personnel in our case 
consist mainly of the shop floor operators and machine engineer technicians. As we wanted to capture the 
on-going process of design-in-use through the design ethnography, the main contribution is illustrated 
through lessons learned which include efforts of furthering the knowledge on design; both in terms of the 
system as well as of the work organization. This is described from an inside-out deployment process of how 
a new advanced real-time analytics application is configured and implemented. By a design-in-use strategy 
we refer to the overlap of design and use, in which the design and use phases merges (Islind & Lundh Snis, 
2017).  
More specifically, we investigate the design-in-use through two research questions: i) How can IIoT layered 
architectures be aligned with user and business values in industrial manufacturing? and ii) How does 
implementation of RTA applications influence shop floor operations in manufacturing industry? A general 
Industrial Internet of Thing (IIoT) model by Al-Fuqaha (2015) is adapted and applied to structure and 
develop our findings. This layered model is further developed throughout our discussion that is summarized 
with three key lessons learned: i) Selecting architecture; ii) Harmonizing data structures; and iii) Aligning 
business and user values. These lessons learned can be expanded by others who want to embark on similar 
RTA initiatives. By entering the deployment phase with a design-in-use strategy, we suggest that our 
findings can form a basis to explore new avenues for organizations to achieve more from RTA investments 
and thereby gain business value for a data-driven industry. 

Theoretical framing 

Industrial Internet of Things 

Internet of things (IoT) is developing as a key technology type within the era of Industry 4.0 (Al-Fuqaha, 
2015; Albishi et al., 2017; Boyes et al., 2018; Gilchrist, 2016; Rose, Eldridge, & Chapin, 2015; Trinks et al., 
2017; Tripathi, 2019; Verma et al., 2017). The term IoT originated from a British pioneer, Kevin Ashton in 
1999 (Rose et al., 2015), and was described as a type of system in which objects in the physical world could 
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be connected to the Internet by sensors. The essential foundation is based on smart sensors that collaborate 
directly without human involvement to deliver a new class of applications (Al-Fuqaha, 2015). IoT 
technologies should be built on sensors with self-awareness that will predict their remaining useful life and 
to automatically produce data from machine sensors through their controllers with functions such as; self-
awareness, self-prediction and self-comparison (Gilchrist, 2016). Consequently, Industrial IoT (IIoT) has 
become a key technology in the frame of forwarding Industry 4.0 (Schuh et al., 2017). IIoT connects other 
features within the industrial technological landscape, based on the same idea as IoT. IIoT thereby outlines  
a technology type built of interrelated computing devices, mechanical and digital machines that rely on data 
and communication between a network of physical objects that feature an IP (Internet Protocol) address 
for internet connectivity and Internet-enabled devices and systems in industrial settings (Verma et al., 
2017). Hence, IIoT focuses on increased visibility and insights into production operations with systems that 
integrate machine sensors, middleware and software with backend cloud storage (Gilchrist, 2016). IIoT 
systems generate huge amounts of data, which can be a problem, and methods to handle the large amount 
and transform business operational processes to gain feedback of results from interrogating large data sets 
through advanced analytics are needed (Abbasi et al., 2016; Boyes et al., 2018; Gilchrist, 2016). An interest 
in this paper is to further illuminate IIoT, i.e., the impact of the implementation process of IIoT systems, 
and to shed light on how massive data is generated and analyzed, as well as illustrate the effect on shop 
floor work. We therefore adopt to Boyes et al. (2018, p.3) definition of IIoT: “A system comprising 
networked smart objects,… which enable real-time, intelligent, and autonomous access, collection, analysis, 
communications, and exchange of process, product and/or service information, within the industrial 
environment, to optimize overall production value.” 

Real-Time Analytics 

IIoT technologies creates massive amounts of data that in the long-term aim to generate business value 
through analytics applications. In an early MISQ special issue, Chen et al. (2012) outline business 
intelligence (BI) and analytics (A) and describe three generations of BI&A; 1) data management and 
warehousing (1970-1990), 2) web intelligence and analytics (2000), and 3) mobile and sensor-based IoT 
(2010). With the 3rd generation they recommend to further research analytics and context-aware 
techniques for collecting, analyzing, and visualizing large-scale sensor data, to ensure business value. 
Another related stream of research of IIoT analytics technologies (Davenport, 2018) has shown that 
problems occurred when large amounts of unnecessary data were processed which later proved both time-
consuming and irrelevant for decision-making purposes. In realm of the development, (Davenport, 2018) 
outlines “analytics” through four generations of transformations to reach for analytical capabilities and 
artificial intelligence, and generate business value: 1) statistic and descriptive analytics, 2) big data 
analytics, 3) industrialized analytics (predictive and prescriptive), and 4) artificial intelligence (analytics 
embedded and automated). Given these two streams of interrelated research, this paper is placed after the 
3rd era of BI&A (Chen et al., 2012), with specific interest on the level of mobile and sensor-based 
applications. Additionally, with a focus on real-time analytics applications of predictive maintenance the 
interest is placed between 3rd and 4th generation of analytics (Davenport, 2018). Analytics describes the 
theory of analysis and is used to group all existing analytical methods herein. As argued, analytics need to 
be used in combination with other technological terms to clarify the application scenarios (Trinks et al., 
2017). Today, standardized applications for RTA are promising, both in regard to prescriptive and 
predictive analytics (Verma et al., 2017). These applications allow machine data to alarm when it is time to 
repair and upgrade failed components, i.e., tracking deviations and measuring statistics for machine 
capability and quality. 
When organizations are designing and implementing RTA technologies built on an IIoT architecture, there 
are models that illustrate how enabling technologies such as RFID (Radio Frequency Identification), smart 
sensors and RTA applications and services are linked together. In relation to that, Al-Fuqaha (2015) 
describe five layers of IoT: i) the object layer, ii) object-abstraction layer, iii) service management layer, iv) 
application layer, and v) business layers. Together, these are the most essential layers for a robust 
computing-layered network (Al-Fuqaha, 2015). The object layer collects large-scale sensor data from 
physical things (e.g., machines) and handles data communication. The service management- and 
application layers focus on software configurations. These include new types of data-heavy software that 
collect data, transfer data into applications, and furthers the data into a business layer, making the data 
applicable (Al-Fuqaha, 2005). Yoo et al. (2010) discuss layered-modular architecture from an IS 
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perspective. The view presented therein, is based on a platform architecture, in which there are four layers: 
i) a content layer, ii) a service layer, iii) a network layer and, iv) a device layer. While we acknowledge the 
importance of separating the layers, as described in Al-Fuqaha (2015), neither the model from Al-Fuqaha 
(2015) nor from Yoo (2010) fit our case seamlessly. For the purpose of this paper, we therefore densify the 
model presented by Al-Fuqaha and seek inspiration from Yoo (2010). We focus the analysis on three layers 
which are of particular interest for the case, by clustering the object and object-abstraction layer presented 
by Al-Fuqaha (layers i and ii) and by clustering the service management layer and the application layer 
(layers iii and iv). Figure 1, illustrate the three-layered model used for the analysis of the case, as follows: i) 
object and object-abstraction layer, ii) service management- and application layer, and iii) business layer. 

 
Figure 1. A three-layered model for RTA implementation,  

adapted from Al-Fuqaha (2015) and further inspired by Yoo (2010) 

Research approach 
There is a withstanding tradition of ethnography for design and its discount derivatives (Anderson, 1994; 
Beyer & Holtzblatt, 1999; Dourish, 2006). The difference between ethnography and design ethnography is 
that in the latter, the designer also actively engages in orchestrating change (Baskerville & Myers, 2015), an 
aspect which is similar to action research. The aim of the design ethnography approach is to contribute with 
a shared design experience and to facilitate learning about social, cultural practices and values, built on 
empirically driven research of real-world contexts. The research approach emphasizes researchers to 
actively engage with on-going practice towards future-oriented objectives of: “designing, creating, 
innovating, and improvising artefacts” that may affect the cultural and social setting (Baskerville et al., 
2015). Furthermore, it allows for understanding how design activities contribute to and interconnect both 
work and design ideas sprung from practitioners and designers in iterations close to the empirical setting. 
Hence design-in-use, actively includes real users within the studied setting. This research case applies 
design-in-use to the studies of configuration, implementation and use of the RTA application X-top in an 
industrial shop floor setting. Hence, the case provides in-depth insights into practical real-time 
implementation process of IIoT system.  
While studying design-in-use, various data collection and design activities are possible, such as 
observations, interviews, informal meetings, documentation, and tests of the standardized RTA application, 
further on called X-top. We wanted to understand the implementation process of an RTA standardized 
application, what type of data that ought to be included, how to use the generated data, and to understand 
the correlation to the ERP system and quality of statistics to support everyday practice. A design-in-use 
perspective has been applied in our study, and iterates around a design-in-use cycle that exchanges outputs 
from use as inputs to design or re-design of an RTA application from a real-world problem (Islind & Lundh 
Snis, 2018). Through studying design-in-use we present an illustrative account of the design, introduction 
and use that are derived from in-depth observations and inquiries of what personnel experience during the 
studied process. In this case, the first author actively engaged in the introduction of the RTA application, 
while doing observations and step-by-step inquiries.  

Data collection and Analysis 

The data collection included several types of research activities, see Table 1. Besides continuous formalized 
observations of the operator on the shop floor, interviews and focus group sessions were conducted. The 
data gathering also included participation in meetings, workshops, oral presentations with feedback loops 
as well as formal and informal discussions.  
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Date (m/y) Respondents (#)  Activities Duration  
Dec -18, Oct 19 
& May -20 

Operators (7) Observations and interview on shop floor work  2 obs, 6 hours 
1 interview, 1 hour 

May -19 Production leaders (3) Observations and interviews, shop floor  4 hours 
Dec -18 Project manager (1) Interview about the planning and scheduling in the ERP 

system 
1 hour 

Feb -19 Machine Engineers (5) Focus group interview 1,5 hours 
Feb -19 & 
Oct -19 

Supply manager X-top (1) Interview and meeting about installation status and 
functionality 

1,5 hours 

Apr -19 Management group (5) Presentation and discussion of X-top configuration and 
implementation 

1 hour 

From Dec –18 
– May -20  

ME manager Development and follow up meeting of X-top 
configuration, implementation, and use 

15 meetings 1-3 
hours each 

Table 1. Overview of data collection activities 

These activities were targeting towards a deeper understanding of the actual configuration and 
implementation, and what interventions took place in practice (Baskerville et al., 2015). The research lasted 
1,5 years in close collaboration with staffs in a manufacturing company. All together comprising about 20 
different respondents: operators, project managers, Machine Engineer (ME) technicians, ME manager and 
the management group. All respondents signed an informed consent form for the data collection activities. 
The observations were partly video recorded and summarized in field notes. The interviews and focus group 
sessions were conducted through thematic interview guides targeting the various respondent groups. All 
sessions were audio recorded and verbatim transcribed into text. The interview sessions covered topics 
related to benefits and problems while using old (e.g., CAD, PLM, SAP) and new applications, and how to 
interpret and make use of massive real-time data. Throughout the interviews, a conversational tone and 
open-minded approach guided the interest to understand the respondents views (Tanggaard, 2007). We 
were aware of the power dynamics during the interviews (Myers & Newman, 2007), and especially 
questions about the company and the respondents' experiences of sensitive information, see Table 1. The 
analysis was conducted through qualitative content analysis in order to interpret the empirical data as an 
inductive approach (Bryman, 2012; Kohlbacher, 2006). We used the qualitative data analysis software 
(SQDAS) NVivo 11th edition for transcriptions and coding of the content analysis. The design-in-use 
perspective was applied as an iterative process of three interrelated processes that were ongoing 
simultaneously (Islind et al., 2018; Islind & Snis, 2017). Also, during the content analysis, the intertwined 
character of design-in-use was viewed as an abductive process of deriving concepts from theory, as an 
foundation for the lessons learned and to reach for a theoretical understanding (Bryman, 2012). 

Empirical setting: Siemens Energy 

The research setting is a local manufacturing plant in West Sweden, and part of the global Siemens Energy 
(SE) company. The local SE with approx. 150 employees is manufacturing combustion chambers which 
delivers to the head company manufacturing “state of the art” full industrial turbomachinery. Due to the 
heavy products and the high-quality product demands, the production cycles are up to one year. Production 
at the local Swedish sites is arranged in functional production units with low automation grade and irregular 
production flows. Some operations rely heavily on manual work such as welding, conducted by experienced 
operators and technicians. Cutting and welding in stainless steel is performed with machines for laser 
welding, pressing, and forming. At the local SE, the standardized RTA application X-top was installed on a 
fiber-laser machine. This high-capacity laser machine needs to run through many product variants and 
batches and has an inbuilt automation system with PLC (programmable logic controller), that needs full 
surveillance by one operator, during two daily shifts. The X-top system is developed on the principles of 
real-time IIoT and collects data generated from sensors, devices, and automated signals of the laser 
machine. It was launched as a “Plug&Play” system aiming to connect machines with turn-key wireless data 
collection, and web visualizations for various end-users, especially targeting operator work. X-top is 
designed for detecting deviations and disturbances, however specific local configurations targeting 
customer adjustments, needs to be done. X-top manages a range of real-time deviation support on signals 
for measuring the machine health: production overviews (scheduled and running status), disturbance 
overviews, charts, and statistics. It complements the ERP-systems (SAP) production and resource planning. 
It this means that the real-time data from X-top complements and is measured against the SAP planned 
production data, but does not replace it, rather interlinks plans with factual actions.  
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Findings  

Problems at the shop floor  

One problem is the large amount of production deviations due to stops in the production which generates 
high costs. The local company is not sure when or why deviations occur, neither on daily basis nor during 
the year cycle. On daily basis, operators and technicians start their operations given from the production 
order, generated from SAP, including information of production time: both machine time and manual 
operations. When finishing, they stamp the whole working cycle. They also must rely on product drawings 
and CAD instructions that are stored in a PLM system integrated in the SAP suit, of which they initiate and 
finish the operations. Production planning orders and drawings are available in both the SAP and the PLM 
system as well as on paper. As their work routines now are more digitalized and followed up in real practice 
by the X-top system, they need even more to communicate both men to men and on written notes in and 
between shifts. Hence, operators and technicians get stressed of running machines, handling manual work, 
and updating both digital and manual data. The variations of outcome for running a machine effectively, 
becomes related to individual performances and operators’ specific competences, rather than on a high 
qualitative and general work process level. A way of tackling these problems, the company decided to test a 
new application for real-time analytics, X-top, with a pilot-implementation on the fiber-laser machine. A 
potential to control and optimize production, through interpretation of interconnected machine data that 
appeared to be an essential goal for the operators and the manufacturing engineers’ technicians (MEs).  

Problems with the system configuration and implementation 

The following description of the configuration and implementation of X-top on the fiber-laser shows the 
steps that the company had to handle, to achieve an up-running functionality for real-time analytics of data. 
Even if X-top is claimed to be a “Plug&Play” application, there were problems during the configuration and 
implementation phases. Other complications regarded integration of the production order data (defined by 
the MEs and imported from SAP) in combination with the real-time machine data. This whole phase, from 
configuration to implementation took about 10 months to get the system running, 9 months longer than 
estimated. In spring 2020 X-top was fully installed on the fiber-laser and generated real-time machine data.  
Implementation on the object- and object-abstraction layer: The object abstraction layer 
represents the physical sensors from the IoT, for data collection and process information. Configuration 
work regarded to find appropriate sensors signals and tuning the data communication etc. Actions taken 
were: i) time measuring of data: An external electrician firm together with internal technicians installed 
smart radio loggers on selected sensor signals on the fiber laser with RFID (Radio-Frequency Identification-
Data) technology and ii) data communication/internet: By using RS-485, a multipoint communications 
standard (an alternative to Wi-Fi), electrical signaling is balancing and defining the electrical characteristics 
of drivers and receivers for use in serial communications systems. Above this network, there is a mesh 
network, with nodes connecting directly, dynamically, and non-hierarchically to other nodes in the data 
communication topology. During this phase, many iterations occurred, and it took approx. 3 months to 
proceed (way over time plan). In addition, external IT support was needed, even if the X-top supplier was 
continuously supportive.  
Implementation on the service management- and application layer: This layer request pairing 
with specific hardware platform and machine automation. It also concerns the services requested by users 
on the application layer. Hence, further configurations of the X-top application were to correlate the 
company-specific production data of production cycle time from SAP. The planned production time is pre-
estimated time and includes cycle time + setup time. Hence, data is transferred in real-time to a Microsoft 
Azure cloud center. Even if X-top only measure cycle times in the running machine, there is a need to 
measure it against data from SAP against X-top. The following configurations were made: i) import of data: 
Production data with only cycle times was imported from the ERP system into X-top and ii) definitions of 
deviation codes: generation of a stop coding list for manufacturing deviations such as machine errors, non-
planned production, cleaning, calibration, meeting etc. specific for the company.  

Implementation on the business layer: Configurations on this level concerned how to assess and 
define the measurements from the X-top application, hence, analyzing machine data into business models, 
graphs, flowcharts, etc. and to support with statistics for daily manual operations. In practice this meant to 
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assess and estimate generated statistics and the aggregated statistics regarding machines running and the 
deviations over time to make both short (daily by operator) and long-term decisions. Additional system-
integration activities to consider during configuration is if new types of real-time data analytics interfere or 
is strengthening integration to other systems/applications and correlated data, i.e., connecting data from 
other systems such as SAP, other planning applications and drawing/planning systems. The infrastructure 
of systems are too many extents very large and over-lapping. From a user perspective X-top use there is a 
need to change work routines for both operators, technicians and production managers which disrupt but 
also enhance visualizations and communication of production status. 

System Implementation Challenges on Shop Floor Operations 

The main operator Rolle runs the fiber-laser machine, with support of the ME manager Kalle. Both were 
involved in the configuration and implementation of the X-top system during 2019-2020. In March 2020, 
the system was up and running on the fiber-laser and an installation plan for a Robot and a 3D-laser was 
developing. The implementation phase was extensive and took 10 months instead of 9 months. Obstacles 
were lack of specific expertise such as IT support, electricians with data communication skills, and a lack of 
specification on data communication requirements from the X-top supplier. Even if both Rolle and Kalle 
were skilled with high IT competence and practical production systems experience, they were stuck without 
this support. Additionally, the whole system deployment process was not initiated from a management 
perspective, rather built from a bottom-up perspective and low-prioritized. Even if X-top was a totally new 
type of system for measuring connected machines, the staff were relieved to find a way to meet the 
requirements from the global company of increased productivity, through gathering real-time data from 
every-day operations. Productivity is traditionally measured by calculating hours spent on each product 
unit, built on scheduled and planned production data from the business system SAP. However, such plans 
tend to oversee employees manual time spent for handling production units and operations between unit 
batches, i.e., manual operator work is not measured and planned. Hence, a variety of challenges occurred 
in the implementation process of X-top, of obtaining effective data and tuning the measurements.  

To understand the various instances of shop floor operations, a general work routine is outlined. A 
production planning list defines jobs for the up-coming week. For each job there is a correlated production 
order (PO) registered in SAP. Each PO contains a full production time that includes manual time (fixed 
time) + cycle time per unit (=CT/article nr). A job is run by article numbers according to the PO, with time-
estimation for the whole job time. However, X-top only logs the cycle time per article and does not include 
the manual time. The planning list in X-top is based on imported data from SAP at a certain fixed time. 
However, if the production schedule is updated these changes will not be shown in X-top and cause 
problems when logging how jobs are running in the statistics of real-time data. Hence, the two systems with 
different structures are not integrated to each other on a system level. When new articles are planned to be 
manufactured in the same machine, they do not exist in X-top, only in SAP, therefore X-top continuously 
needs an automated digitalized routine for detecting and measuring new jobs. Regularly, such updates are 
therefore communicated between Kalle and Rolle and causes instability of trusting the real operation times. 

A work operation scenario at the machine: The following illustrates the operator Rolle’s activities on 
the fiber-laser, and in the SAP and X-top systems. Rolle starts a scheduled job of 27 minutes (information 
from the production card). 15 minutes of the time is manual, and the rest 12 min. is laser-machine time. X-
top register the manual 15 minutes as a disturbance if it is not coded. When Rolle finishes a job in practice, 
X-top continues to be online, i.e., X-top believes the job is on-going until the operator starts the next job. It 
means that the system is “operator controlled”. Thereafter Rolle continues the manual work, resets fixtures, 
and prepares for the next job. During this time, X-top just goes on, meaning that a started job never finishes, 
unless Rolle interfere. Traditionally, a job is finished by registration in SAP, but in X-top there are no visible 
finished times unless there are coded deviations. The X-top statistics can show deviations over a period, 
including coded disturbances together with generic automated data (codes). Additional functionality is text-
based comments for disturbances, but they are not a good source for understanding data statistics over time 
even because they are based on the untraceable text strings elements. Hence, the deviation code list in X-
top need to be continuously reviewed during the implementation phase and discussed in the production 
teams, so operators and technicians knows what and how to handle deviation codes both in the system and 
in the work operations.  
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Discussion  
In this paper we analyzed rich empirical data to explore how IIoT layered architectures can be aligned with 
user and business values in industrial manufacturing. Throughout the research our engagement in 
the implementation process advanced as a design-in-use approach (Islind et al., 2018; Islind et al., 2017). In 
contrast to a traditional separation of design and use phases (Baskerville et al., 2015) the analysis 
showed that RTA applications need a user-driven involvement of operators and technicians. Their roles 
emerged as a process of congruence between data-driven and a user-driven approach since ill-structured 
data analytics requires core competences and needs from shop floor workers in terms of deploying work 
operations in relation to the RTA application. Re-considering the data-driven design approach means to 
refrain from time consuming configuration efforts and quality problems to instead pay attention to user-
driven needs. By analyzing the findings according to the adjusted three-layered model adapted by Al-
Fuqaha (2015), diverse architecture and use issues were revealed. To complement to Al-Fuqaha’s 
architecture, we have formulated three lessons learned that connect to the layered model. These lessons 
learned are considerations to be managed in order to bridge and align levels of interests both in terms of 
theoretical contributions to general IIoT models and of practical implications for real world IIoT 
implementations (Al-Fuqaha, 2015).  
 
Lesson learned # 1 – Selecting architecture: This lesson learned alludes to issues around a common 
strategy on all architectural levels in the IIoT model since issues concerning the application of analytical 
tools stems from real-time demands on data, structure and use (Boyes et al., 2018; Trinks et al., 2017). RTA 
applications such as X-top are usually launched as a “Plug&Play” application that will work on top of other 
enterprise systems without any need to configure settings. It offers standardized, but extremely flexible 
structures of data and services. However, our findings showed the contingent, continuous, and non-
determinate nature of deploying the RTA system as a “Plug&Play” application. To implement and configure 
the system is time-consuming to find the right sensors and getting the system up and running on one 
machine. The influence on old IT systems and its compatibility to generate data for further productive data-
driven shop floor work is crucial to understand. Hence, we argue for a strategic plan with a 
common architecture and a well-integrated platform thinking (Boyes et al., 2018; Iftikhar et al., 2019; 
Verma et al., 2017).  The architecture strategy needs to include knowledge on how to manage clear 
communication and owner relationships between production management and IT department. Also, the 
implementation of RTA applications creates complexity for deploying both immediate and long-
term decisions based on data derived. This is not only a management and IT task anymore, rather the 
argument here, is to further strategize on how such system comes to play and work in practice. Hence, it is 
crucial that this type of strategy considers a dream team of users with knowledge and competencies of 
production technology and machine behavior as well as management support. Combining a well-defined 
architecture with defined teams and roles is needed for strategizing on how to deploy RTA applications in a 
data-driven industry.   
 
Lesson learned # 2 - Harmonizing data structures: This lesson learned draws mainly on the 
mismatch between estimated measurement codes and real-time data. Scheduled downtime versus actual 
downtime, practical knowledge versus production knowledge disrupts the design and implementation of 
RTA applications (Madsen, Bilberg, & Hansen, 2016). The findings show that an ERP and RTA system 
deviates in terms of settings, key measurements, and codes. RTAs measure “real” machine time capacity 
continuously meanwhile the ERP delivers production plans. In the ERP system estimated full time is 
measured, e.g., the production time in the production order contains a full production time that includes 
both manual time and machine cycle time per production unit. Hence, there is a lack of feedback loops to 
the ERP system of the actual completion time. This effect changes due to disruptions in machine capability. 
Deviation codes and system-driven interruption codes should be easily summarized and reviewed. Facing 
daily operational problems of data consistency resulted in configurations and modifications that became 
directly visible in the system. Rather, the personnel need to focus on the continuous flow of real-time data 
and define limits, intervals, and measurements to set as actionable (Chen et al., 2012; Davenport, 2018; 
Trinks et al., 2017). Hence, data structures must be harmonized with current and desired definitions of data 
measurements and should not be restricted to the old ERP system data structure. We argue 
that this contributes to leverage the accurate RTA data at the exact moment to create predictive models that 
will generate business and user values for shop floor workers and management (Verma et al., 2017).  
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Lessons learned # 3 - Aligning business and user values: This lesson learned concern the 
congruence of the architecture and the users’ work environment by aligning the RTA implementation 
specifically with business and user values. Having user and business values accommodated in the RTA 
implementation one must involve relevant users in the design process from the beginning (Islind et al., 
2018). Additionally, we show how configurations of the system’s data structure constantly probe changes in 
work operations, while at the same time being changed itself. Interrelated and time-pressured shop floor 
manual work and machine operations are complex and leave no room for errors in on-going production. 
The support and configuration work changed both regarding content and character, which demanded 
increasingly intertwined roles in the implementation process. The new way of working out business 
operations pushed most of the operators and technicians to learn how to use and exploit new possibilities in 
the application. Bringing the operators and the technicians into the design process also affected their 
acceptance later. Both operators and technicians needed to combine old experiences with new ones and 
some new roles were developing such as a system administrator at the local site. Hence, new skills and 
competences on both shop floor and management levels are acquired for the knowledge and understanding 
of an RTA initiative. Through our lessons learned we have argued for facilitating a bottom-up approach and 
letting the shop floor personnel engage in both the management of business operations (McAfee et al., 2012) 
and in the system configuration and harmonization of data to increase the value in a data-driven industry 
(Davenport, 2018). 
 
Conclusion 
 
This research departed from the emerging field of RTA applications that are currently adopted by the 
manufacturing industry in order to increase productivity and business value for a smart, data-driven 
industry. In sum, this paper offers a well-needed contextualization of how IIoT and RTAs are deployed in 
the manufacturing industry. We shed light on the way IIoT layered architectures can be aligned with user 
and business values in industrial manufacturing and illustrate how the implementation of RTA applications 
influence shop floor and manufacturing operations. More specifically, we explored the complex congruence 
between existing shop floor work and RTA applications, reasoning between a data-driven and a user-driven 
approach. The iterative and continuous work of design, configuration, and implementation of RTA 
applications (built on IIoT) and work operations is a distinguished feature of the design-in-use perspective, 
which provided insights into the complexity of the standardized RTA implementation and deployment. 
 
We conclude that our study extends current architecture models of IIoT systems by providing concrete 
implications on what actions and levels needed to be considered when levering an RTA application and to 
align it to organizational readiness. Through the analysis of the industrial case data combined with 
theoretical foundations, we forwarded three key lessons learned related to the layers in Al-Fuqaha (2015). 
The implications from the lessons learned will also address changes on all levels in the IIoT model. We 
recommend the use of these three lessons learned for others that want to embark on similar RTA projects. 
The lessons learned might be transferrable to other industrial settings where RTA/IIoT applications are to 
be implemented and where there is a gap between the high-level abstraction in which application solutions 
operate and the low-level abstraction of industrial shop floor practices.  More research and models are 
required to further develop and conceptualize enabling technologies for IIoT and RTA applications. For 
instance, studies are needed to identify incompatibility issues in more detail, for instance quantitative 
studies on deviation codes and measurements that verifies qualitative perceptions.  

REFERENCES 
Abbasi, A., Sarker, S., & Chiang, R. H. (2016). Big data research in information systems: Toward an inclusive research 

agenda. Journal of the Association for Information Systems, 17(2), 3.  
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on 

enabling technologies, protocols, and applications. Paper presented at the IEEE communications surveys  
tutorials, 17(4), 2347-2376. 

Albishi, S., Soh, B., Ullah, A., & Algarni, F. (2017). Challenges and Solutions for Applications and Technologies in the 
Internet of Things. Procedia Computer Science, 124, 608-614.  

Anderson, R. J. (1994). Representations and requirements: the value of ethnography in system design. Human-
computer interaction, 9(2), 151-182.  

Andriole, S. J. (2017). Five myths about digital transformation. MIT sloan management review, 58(3).  



Real-time Analytics through IIoT 

Twenty-Seventh Americas Conference on Information Systems, Montreal, 2021 10 

Baskerville, R. L., & Myers, M. D. (2015). Design ethnography in information systems. Information Systems Journal, 
25(1), 23-46.  

Beyer, H., & Holtzblatt, K. (1999). Contextual design. interactions, 6(1), 32-42.  
Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): An analysis 

framework. Computers in industry, 101, 1-12.  
Bryman, A. (2012). Social research methods (4th ed.). New York: Oxford university press. 
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant 

technologies: WW Norton & Company. 
Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 

1530-1534.  
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS 

quarterly, 36(4).  
Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73-80.  
De Carolis, A., Macchi, M., Negri, E., & Terzi, S. (2017). Guiding manufacturing companies towards digitalization a 

methodology for supporting manufacturing companies in defining their digitalization roadmap. Paper 
presented at the 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC). 

Dourish, P. (2006). Implications for design. Paper presented at the Proceedings of the SIGCHI conference on Human 
Factors in computing systems. 

Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress, Berkeley, CA: Springer. 
Iftikhar, N., Baattrup-Andersen, T., Nordbjerg, F. E., Bobolea, E., & Radu, P.-B. (2019). Data Analytics for Smart 

Manufacturing: A Case Study. Paper presented at the Proceedings of the 8th International Conference on 
Data Science, Technology and Applications-Volume 1: Data. 

Islind, A. S., & Lundh Snis, U. (2018). From co-design to co-care: designing a collaborative practice in care. Systems, 
Signs & Actions, 11(1), 1-24.  

Islind, A. S., & Snis, U. L. (2017). Learning in home care: a digital artifact as a designated boundary object-in-use. 
Journal of Workplace Learning, 29(7/8), 577-587.  

Itabashi-Campbell, R., Gluesing, J., Williams, B., Figueiredo, J., & Trevelyan, J. (2013). Engineering problem-solving 
in social contexts:‘collective wisdom’and ‘ba’. Engineering Practice in a Global Context: Understanding the 
Technical and the Social, 129-158.  

Kohlbacher, F. (2006). The use of qualitative content analysis in case study research. Paper presented at the Forum 
Qualitative Sozialforschung/Forum: Qualitative Social Research. 

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems 
Engineering, 6(4), 239-242.  

Li, J., Altman, E., & Touati, C. (2015). A general SDN-based IoT framework with NVF implementation. ZTE 
communications, 13(3), 42-45.  

Madsen, E. S., Bilberg, A., & Hansen, D. G. (2016). Industry 4.0 and digitalization call for vocational skills, applied 
industrial engineering, and less for pure academics. Paper presented at the 5th World Conference on 
Production and Operations Management P&OM. 

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., & Barton, D. (2012). Big data: the management revolution. 
Harvard business review, 90(10), 60-68.  

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft. Information and 
organization, 17(1), 2-26.  

Rose, K., Eldridge, S., & Chapin, L. (2015). The internet of things: An overview. The Internet Society (ISOC), 80, 1-50.  
Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., & Wahlster, W. (2017). Industrie 4.0 Maturity Index. Retrieved 

from  
Tanggaard, L. (2007). The research interview as discourses crossing swords the researcher and apprentice on crossing 

roads. Qualitative Inquiry, 13(1), 160-176.  
Trinks, S., & Felden, C. (2017). Real time analytics—State of the art: Potentials and limitations in the smart factory. 

Paper presented at the 2017 IEEE International Conference on Big Data (Big Data). 
Tripathi, S. (2019). System Dynamics perspective for Adoption of Internet of Things: A Conceptual Framework. Paper 

presented at the 2019 10th International Conference on Computing, Communication and Networking 
Technologies (ICCCNT). 

Verma, S., Kawamoto, Y., Fadlullah, Z. M., Nishiyama, H., & Kato, N. (2017). A survey on network methodologies for 
real-time analytics of massive IoT data and open research issues. IEEE Communications Surveys & Tutorials, 
19(3), 1457-1477.  

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). Research commentary—the new organizing logic of digital innovation: 
an agenda for information systems research. Information systems research, 21(4), 724-735. 

Williams, S., Hardy, C., & Nitschke, P. (2019). Configuring the Internet of things (IoT): a review and implications for 
big data analytics. Paper presented at the Proceedings of the 52nd Hawaii international conference on system 
sciences. 

 


