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Abstract: We develop a framework for solving the stationary, incompressible Stokes equations in an axisym-
metric domain. By means of Fourier expansion with respect to the angular variable, the three-dimensional
Stokes problem is reduced to an equivalent, countable family of decoupled two-dimensional problems. By
using decomposition of three-dimensional Sobolev norms, we derive natural variational spaces for the two-
dimensional problems, and show that the variational formulations are well-posed. We analyze the error due
to Fourier truncation and conclude that, for data that are sufficiently regular, it suffices to solve a small num-
ber of two-dimensional problems.
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1 Introduction

To determine approximate solutions to fluid flow problems in three-dimensional geometries is a computa-
tionally demanding task. In this paper, we present a framework for efficiently solving the stationary, incom-
pressible Stokes equations in an axisymmetric domain Q, which is obtained by rotating its half section Q
around the symmetry axis.

We use Fourier expansions with respect to the angular variable 6, both of the solution and the data, to
reduce the three-dimensional Stokes problem to an equivalent, countable family of decoupled two-dimen-
sional problems (set in Q) for the Fourier coefficients. A natural way to approximate the three-dimensional
problem is then to use Fourier truncation and, to obtain a fully discrete scheme, compute approximate solu-
tions to a finite number of the two-dimensional problems.

This is an established technique to approximate boundary value problems that are invariant by rotation.
Early error analysis results for second-order elliptic problems can be found in [8] and for Poisson’s equation
in domains with reentrant edges in [6], both using finite element approximation for the two-dimensional
problems. We refer to [5] for additional references to problems described by Laplace or wave equations, the
Lamé system, Stokes or Navier—Stokes systems, and Maxwell’s equations, and to [6] for early references to
algorithms and applications.

We analyze the error due to Fourier truncation and show that, for data that are sufficiently regular with
respect to 6, it suffices to solve a small number of two-dimensional problems, which makes the method effi-
cient. Also, the decoupling of the two-dimensional problems makes it suitable for parallel implementation.
A further advantage is simplification of the mesh-generation, which is only required for the two-dimensional
half section Q.
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An added complexity is that the natural, variational spaces for the Fourier coefficients turn out to be
weighted Sobolev spaces, where the weight is either the distance to the symmetry axis, or its inverse. We
derive these spaces by decomposing (through a change of variables to cylindrical coordinates) the three-
dimensional norms for the relevant spaces L?(Q), L2(Q), (H'(Q))?, (H}(Q))? and (H~'(Q))? into sums over
all wavenumbers. As a result, we show that the three-dimensional spaces are isometrically isomorphic to
a certain subspace of the Cartesian product, over all wavenumbers, of the two-dimensional weighted spaces.

The characterizations of the three-dimensional spaces thus obtained are in agreement with the results
in [3], where characterizations of H5(Q) and (H5(Q))3 by Fourier coefficients for any positive real s are derived;
here non-integer order spaces are treated first, and the derivation for integer order spaces is then based on
Hilbert space interpolation.

As recently shown in [5], the more direct approach for Sobolev spaces of integer order (based on chang-
ing to cylindrical coordinates in the three-dimensional norms) results in equivalent norms (compared with
the norms in [3]), but where the equivalence constants (unlike in [3]) are independent of the domain. In [5],
characterizations of H™(Q) by Fourier coefficients for any positive integer m are facilitated by the introduc-
tion of new differential operators o; = %(ax - i0y) and az = %(ax +10y). The results for vector spaces are
then derived from a relation between scalar and vector norms for the Fourier coefficients. In this paper, we
work with the differential operators 0, and 0, and, in the vector case, derive the characterization by directly
rewriting the (H*(Q))3-norm. We compare our results with [5] in Appendix A. We also refer to the early results
in [8], where this direct approach was used to characterize the scalar spaces H"(Q) form = 1, 2, 3.

The purpose of the present work is to give a comprehensive presentation directly aimed at the Stokes
problem providing, inter alia, detailed derivations of the relevant two-dimensional spaces and norms. Taking
as starting-point, in fact, Fourier decompositions of the three-dimensional inner products

(',')LZ(Q), ('y')(Hl(Q))B and (',')(H(l)((]))s

additionally enables us to derive a decomposition of the negative norm | - || (H-1(G)) and to highlight the
relation between the three-dimensional weak formulation of the Stokes problem and the two-dimensional
weak formulations for the Fourier coefficients.

Examples of how to build on this framework by discretizing the two-dimensional problems can be found
in [3], where spectral methods are used, and [2], where two families of finite elements of order 2 (one with
continuous pressure corresponding to the Taylor-Hood element and one with discontinuous pressure) are
used. The case with an axisymmetric solution (where only the Fourier coefficient of order 0 is considered,
and the angular velocity component is equal to zero), has been treated with finite elements in [1, 9, 10].

A paper in preparation will be devoted to design and analysis of stabilized finite elements for the two-
dimensional problems.

An outline of the paper is as follows.

o In Section 2, we give some examples of axisymmetric domains and state the stationary, incompressible

Stokes equations.

o In Section 3, we recall some basic formulas and state the Stokes problem in cylindrical coordinates.

« In Section 4, we use Fourier expansion with respect to the angular variable to reduce the three-dimen-
sional Stokes problem to a countable family of two-dimensional problems.

o InSection 5, we derive natural variational spaces for the Fourier coefficients by decomposing the relevant
three-dimensional norms into sums over all wavenumbers.

« InSection 6, we state variational formulations of the two-dimensional problems and show that these are
well-posed.

e In Section 7, we introduce two families of anisotropic spaces that we need to analyze the error due to

Fourier truncation.

o In Section 8, we prove an error estimate due to Fourier truncation.
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Figure 1: A right circular cylinder. The axisymmetric domain Q is obtained by rotating its polygonal half section (meridian
domain) Q around the z-axis. The boundary 9Q = ' U Iy of the half section Q consists of two parts. Iy is the interior of the part
of 3Q contained in the z-axis. Rotating the other part, I, around the z-axis gives back 39Q.
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Figure 2: Aright circular cylinder with a hole.
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Figure 3: A right circular cone with a hole. Each corner of Q contained in the z-axis corresponds to a conical singularity in 3Q,
except if the opening angle of Q at this point is /2. Each remaining corner of Q generates an edge in 3Q.

2 Model Description

We consider fluid flow in a bounded domain Q which is invariant by rotation around an axis. We begin by dis-
cussing, and give a few examples of, such domains, following the notation in [3]. We then state the stationary,
incompressible Stokes equations, which we use to model the flow.

2.1 Axisymmetric Domains

An example of an axisymmetric domain Q is given in Figure 1. The axisymmetric domain is obtained by
rotating its half section (meridian domain) Q around the symmetry axis. We assume that Q is polygonal. Note
that the boundary 0Q = T U Iy of the half section Q consists of two parts where Ty, the interior of the part of
0Q contained in the symmetry axis, is a kind of artificial boundary. Two further examples of axisymmetric
domains, and their half sections, are given in Figure 2 and Figure 3.

Remark 2.1. In[3], I'qis assumed to be the union of a finite number of segments with positive measure, which
means that Q is not allowed to meet the symmetry axis at isolated points. This assumption, as noted in [5],
implies that Q (as well as its polygonal half section) is a Lipschitz domain, and it guarantees existence of cer-
tain trace operators, needed since [3] uses vanishing traces on Iy in the definition of the Fourier coefficient
spaces. The more direct approach for integer order Sobolev spaces used in this paper, and more generally
in [5], allows for more general axisymmetric domains whose intersection with the symmetry axis is not
necessarily a union of intervals and where the trace operators are not well defined.
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2.2 Stokes Problem

We model fluid flow through an axisymmetric domain Q by the stationary, incompressible Stokes equations

—Au+g@d1§:j_F in Q,
divii=0 in Q, (2.1)
u=g on a(),

where the unknowns are the velocity 1 and the pressure p

= lixex +Uyey + Uze; € (HH(Q)?, pelL3(Q),

|=¢

and the data are the source term ]f and the Dirichlet boundary data g,

= frex + fyey + fzez € (H(Q)),
=gxex + g’yﬁy +gze; € (H%(aé))3-

For a vector field vV = Vyex + Vyey + V€, defined on Q, we will let ¥ denote both the vector field itself and its
Cartesian component vector (Vy, vy, V,)T. Note that the divergence-free property div ii = 0 implies a necessary
compatibility (zero flux) condition on g:
Jg-ﬂdil:o, (2.2)
Yol
where 1 denotes the unit outward normal vector to Q on 0Q, and dA is (the magnitude of) the area element
on 9Q.
We recall the standard definitions of the Lebesgue and Sobolev spaces (with all derivatives being taken
in the sense of distributions)

L*(Q) := {q | G: O — C measurable, Jltjlz dxdydz < +00},
a
HY Q) := {7 | ¥ € L*(Q), 0,V € L*(Q), 9,V € L*(Q), 9,V € L*(Q)},

with norms

1
< < 2 . < . . - 1
Il 2 = <j|q|2 dxdy dz) v WVl gy = UVIF2) + 102712y + 19y V2 () + 192VI725)) 7

a
and the corresponding inner products (-, )2y and (-, ) g g

Remark 2.2. We consider spaces of complex-valued functions. In Section 4, we will use Fourier expansions
of the data and the unknowns to reduce the three-dimensional Stokes problem in Q to a countable family
of two-dimensional problems in the half section Q. Since the Fourier coefficients (also for real-valued func-
tions) are complex-valued, the two-dimensional variational spaces that we will define in Section 5 will be
spaces of complex-valued functions. Since the interplay between the three- and two-dimensional spaces,
which will play an important part in what follows, is developed most naturally when all spaces contain
complex-valued functions, we will use that also for the three-dimensional spaces, even though in practice
the three-dimensional data and solution will be real-valued.

We also recall the subspaces

L2(Q) := {q | g e L2(Q), J Gdxdydz = o}, HL(Q) = (v | v € HY(Q), ¥ = 0 on 00},

Q

and the dual of H}(Q):
HHQ) := (H(Q))*.
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Remark 2.3. By the dual space H*, we mean the linear space of continuous anti-linear functionals on H so
that, in particular, (u, v)g = (U, v)g+xg when u, v € H.

On Hé(f)), we will use the semi-norm
- y <12 <12 <12 B
Vg (@) = (”axV”LZ(Q) + "ayV”LZ(Q) + "an"LZ(Q))Z s

which is a norm, equivalent to | - || H1(&) On H(l)(f)), and the corresponding inner product (-, -) ()"
Denoting by yo the linear and continuous trace operator defined on H(Q), we have

H2(0Q) := yo(H (),

with norm
I3 @a) == inf_ [Vlg@).
veH (Q)

3 Cylindrical Coordinates

Since the domain () is axisymmetric, we change from Cartesian coordinates (x, y, z) in R x R x R to cylindrical
coordinates (r, 0, z) in R, x (-m, 1] x R, where

r=\x2+y?,

o- —arccos 5 ify <0,
arccos % ify > 0.
We define Q as the product of the half section Q and (-7, 7],
Q:={(r6,2)|(nz)ecQ, -n1<O<n} (3.1)

and, by analogy,
[:={(r6,2)|(rz)el, -n<f<n}

where Q and T are point sets in cylindrical coordinates corresponding to the domain Q and its boundary 00,
respectively.

3.1 Basic Formulas

We recall the identities (see Figure 4 for an illustration in the xy-plane)
1 1
Oy = cos 00, — - sin0dy, 0y =sinfo, + - cos 60g, (3.2)

ex=cosfe,—sinfeg, e, =sinbe,+cosbey,

y
V=Vxe, +Vye, =Vre, +Voey
€p
—=r
=y r.—
9P
e X

Figure 4: A point P with Cartesian coordinates (x, y) and cylindrical coordinates (r, 8), where x = r cos 6 and y = rsin 6.
A vector v, with tail in P, with Cartesian components (vy, \7y)T and cylindrical components (v, vg)'.
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relating the partial derivatives and the orthonormal basis vectors of the Cartesian and cylindrical coordinate

systems, and
Vx = cos Bv, —sinBvg, V), =sinBv, +cosOvg, V=V,

relating the component vectors v = (Vy, Vy, v,)T and v = (v, vy, v,)T of a vector field

V="Vxex+Vyey +V;€; = Ve + Vgey + V€,

expressed in the two coordinate systems. We will write (3.3) in matrix form v = Ryv, where

cos@ -sinf O
Rg =1 sin6 cosf O
0 0 1

(3.3)

From these identities follow the formulas for the gradient and the Laplacian operator acting on a scalar

function v(x, y, z) = v(r, 6, 2),

. . . . 1
grad v = 0xvey + 0yvey + 0,Ve, = 0,ver + 769V§9 + 0zvez,

. . . 9 1 1 1 1
AV = 02V + a)z,v +02V=02v+ 7a,v + r—zaév +0%v= 76r(rarv) + r—zaév +02v

(3.4)

(3.5)

and, for the divergence and the vector Laplacian operator acting on a vector function v(x, y, z) = Rev(r, 6, 2),

.. . . . 1 1 1 1
divV = OxVx + 0yVy + 0;V, = Oy Vr + 7vr + 709\/9 + 0V, = ?a,(rv,) + 769V9 + 0V,
AV = (02Vy + a;vx +02Vy)ex + (6,2(17,, + 6517), + aﬁﬁy)gy +(02V, + 632,172 + a;vz)gz

1 1 1 2
= (7a,(ra,v,) + r—zagv, + agv, - r—zv, - r—zagva>g,

(3.6)

1 1 1 2 1 1
+ (7ar(ra,ve) + r—zagve +02vg - Ve r—zagv,)gg + (?a,(ra,vz) + r—zagvz + a§v2>gz, (3.7)

where the last two terms in the radial and angular components of Av result from the 6-dependence of

ey =cos ey +sinfey, and eg = —sin 6 e, + cos 0 ey, by the relations dge, = eg and dgeg = —e;.

3.2 Stokes Problem in Cylindrical Coordinates

Expressing both the data and the unknowns in cylindrical coordinates

U= lyey + ﬁyﬁy +Uze; = Urr + Ugeg + Uzey,
p=p,
f=fxex+fyey+fzez=frer +foeo +fz€z,

= gxex + §yey + §z€; = 8rer + 80eo + 8z€z,

g

where u = (u,, ug, u,)’, p, and f = (fy, fo, f-)T are functions (distributions) on Q and g =(gr o> g.)TonT,

from (3.4)—(3.7), we can write the Stokes problem (2.1) in cylindrical coordinates

1 2 .
- Au, + r—zu, + r—zagug +o:p=fr inQ,

1 2 1

—Aug+ —ug— —0gu, + —0gp =fp inQ,
r2 r2 r

] -Au, +0,p=f, inQ,

1 1 .
?ar(rur) + 7a9u9 +05u;, =0 inQ,

u=g onl,

where, from (3.5),
1 1
Av = 7a,(ra,v) + r—zagv + agv.

(3.8)
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4 Fourier Expansion

A natural way to reduce the three-dimensional Stokes problem (3.8) in Q to a countable family of two-dimen-
sional problems in Q is to use Fourier expansion with respect to the angular variable 6, both of the solution

u(r,0,z) = Z uk(r, z)et?, (4.1)

keZ
p(r,0,z) = pk(r, z)el*?, (4.2)

\/_ keZ.

where uk = (u¥, uf, u¥)T, and of the data

f(r,0,2) = \/—_ z (r, 2)e", (4.3)

kez
g(r,0,2) = \/—_ Y gk, 2e™. (4.4)

kez

4.1 Two-Dimensional Problems

Inserting the Fourier expansions (4.1)—(4.4) into (3.8) results, since the Stokes problem is linear and invariant
by rotation (which means that the coefficients of the Stokes operator in cylindrical coordinates do not depend
on 6), in uncoupled two-dimensional problems for each Fourier coefficient pair (g", pk ), k e Z:

1+Kk2 2ik
—Aguk + :2 uk + —u0+a,p =fk inQ,
1+ k2 2ik ik
I k k Pk .
_Aaue‘+r—2u9—r—2u, =ff inQ, s
3 K2 ) 4.5
—Aau§+r—2u’z‘+azpk:fzk inQ,
divy g =0 inQ,
g = g onT,
where A, denotes the axisymmetric part of A:
1 2
Agv = ;a,(ra,v) + 03V,
and )
A | o ik g X
divy u* := 7ar(ru,) + 7u9 + 0 Us. (4.6)

Remark 4.1. We will, for all k € Z, show existence and uniqueness of solutions to (4.5) in Section 6.2.
Remark 4.2. By taking the complex conjugate of (4.5), it is easy to see that, for real-valued data ]_“ and g in
which case (letting f k. with some ambiguity of notation, denote the complex conjugate of [")

=7 gk=g"

the pair (i1¥, p¥) solves (4.5) with k replaced by —k. This means that the Fourier coefficients of the solution
will also satisfy

-k _ 7k -k _ 5k
u-=u, p =p

(corresponding, of course, to a unique, real-valued solution of the three-dimensional Stokes problem for real-
valued data), so in the practical case with real-valued data, we only need to solve the problems (4.5) for k > 0
and, in addition, the solution for k = 0 will be real-valued.
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Remark 4.3. The compatibility condition (2.2) translates into a condition on the Fourier coefficient go:

J(g?nr +8%n,)rds = 0, (4.7)
r

wheren = (n,, n,)T denotes the unit outward normal vector to Q on T, and ds is (the length of) the line element
along I'.

5 Variational Spaces

In Section 6.1, we will state variational formulations of the two-dimensional problems (4.5). To determine
natural variational spaces for the Fourier coefficients defined on the half section Q, we start by expressing the
L2(Q)- and (H(Q))3-inner products in cylindrical coordinates, as integrals over Q, and use Fourier expan-
sions to derive decompositions of the inner products, and associated norms, into sums over all wavenumbers.

Based on the structure of the different terms, which are weighted integrals over Q of the Fourier coeffi-
cients and their derivatives, we define weighted Sobolev spaces on Q.

As a result, we obtain characterizations of the three-dimensional spaces L2(Q) and (H'(Q))3, in terms
of two-dimensional weighted spaces on Q for all Fourier coefficients. In particular, we show that the
three-dimensional spaces are isometrically isomorphic to a subspace of the Cartesian product, over all wave-
numbers, of the two-dimensional weighted spaces. As a corollary, we obtain corresponding characterizations
of the subspaces L2(Q) and (H}(Q))>.

Using the results for (Hé(()))3, we finally derive a characterization (also in terms of spaces for all Fourier
coefficients) of its dual (H~1(Q))3.

5.1 Fourier Decomposition of Inner Products and Norms

In cylindrical coordinates, the L2(Q)-inner product of two scalar functions
p(x,y,2)=pr,0,2), 4xy,2) =q(r0,2) (5.1)

is expressed as an integral over Q, defined by (3.1), with weight r:

(ﬁ,éhqﬁ)=.[ﬁédxdyd2=.[pQrdrd9dz. (5.2)
a &
For two vector functions
ux,y,z) = Rou(r, 0,2), V(x,y,z)=Rev(r,6,2), (5.3)

the (H'(Q))3-inner product

U, V) ayy = j(g~§+ grad i : grad v) dxdy dz

= | (xVyx + Uy Vy + 1V,
Q4 OylixOxVy + OylixyVy + 04y, Vy
+ Oxlly OxVy + Oyl dyVy + 0,11, 0,Vy

+ Oxll;0xV; + Oyl 0V, + 0,11,0,V,) dx dy dz
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can, through repeated use of relations (3.2), (3.3) and the Pythagorean trigonometric identity, be expressed
in cylindrical coordinates:

(2, z)(;p(f)))s = J(urvr + UgVg + ULV,
0 1 1
+ 0, UyO,Vy + r—zagu,agv, + 0 U0,V + r—zu,V,
_ 1 i _ 1
+ 0;Ug0; Vg + r—zagugagvg + 0,UpO0, Vg + r—2u9V9
1 _ _ _ _
+ r—z((deue)vr + U, (0gVg) — (00Ur)Ve — Up(dgVr))

0,07, + rlzaguzagvz N azuzazvz)rdr d0dz. (5.4)

We now consider Fourier expansions

p= % pkr, z)e'®, g = \/—_ Y q k(r, z)elk?, (5.5)
kez. kez.

U= —— \/_ Z uk(r,z)e*®, v = \/—_ Z vi(r, z)et?, (5.6)
keZ keZ

where v = (v, vg, v2)T and v¥ = (vK, vk, vK)T. Using the orthogonality on [-7, 1] of the family {e%};®_of
basis functions, we obtain (letting ¥, as before, denote the complex conjugate of g~)

n Vi
_1 k ik6 K _ik'6
Jpqd@ > j(kz pk@r, z)e )( Y 3 z2)e )de
“n “n kez k'ez
1 n
=5 2 1o 02 J kK040 = Y pk(r,2)g"(r, 2) (5.7)
7'[ k,k'ez keZ
, -n

and, similarly, in four other representative cases,

0,U;0,v,d6l = Z aru’,‘(r, z)arV’,‘(r, z),
kez

s s
J j dou,0gV, dO = Z 1uk(r, 2)vk(r, 2),
“n “n kez

Vi n
[ |

(5.8)
(Qoug)v,df = Y ikufy(r, 2)Vy(r, 2), ug(0gv,) d6 = Y ug(r, 2)(-ik) 7y (r, 2).
keZ keZ
Inserting (5.7) and (5.8) (and analogous results for the remaining 6-integrals) into (5.2), (5.4) gives
(ﬁ, q)LZ(Q) = z kaqkrdrdz,
keZQ
(2’ z)(Hl(f)))z = Z J(ukvk + u’év’e‘ + ukvk
keZQ 2
1+k 2ik
+0,uko, vk + 0,uko, vk + :2 ukvk + _2 ukvk
i} o 1+k2 2ik o _
+ a,u’e‘arv’é + azu’éazv’é + r—zugvle< —2 ’r‘vz
S
+0,u a,v +azu azv +r—u % >rdrdz, (5.9)

expressing the L2(Q)-inner product and the (H 1(Q))3-inner product as sums, over all wavenumbers, of
weighted integrals over the half section Q of the Fourier coefficients and their derivatives.
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The corresponding decompositions of the associated norms are

IGl72) = Y. quklzrdrdz, (5.10)
kez
Q
IIZII(ZHl(Q))3 = Z J(Iv’r‘lz +|VEI2 + VK12
keZQ

2 .
k2 k2, LHKS ko 20k g
+ [0rVy | + |02V l” + ” vl + 2 Vel

1+k2 k12 21k k
2 vpl® ~ P2 r

k2 k2 ok
+[0:vpl® +102vpl” + 0

k2
F10,VK2 + 10,V + r—zlv’z‘lz)rdrdz. (5.11)

5.2 Weighted Sobolev Spaces on Q

1

Led by (5.10) and (5.11), where each term is an integral over Q with weight r or r~!, we first introduce the

spaces
L3(Q) := {v | v: Q — C measurable, le(r, 2)|*rdrdz < +oo},

L2,(Q) := {v | v: Q — C measurable, le(r, 2)1Prtdrdz < +oo},
Q
equipped with the natural norms

Mz = ([ vm2Prardz)”s s o = (Vo oRr drdz)”.
Q Q

Next, we define H % (Q) as the space of functions in L%(Q) such that their partial derivatives (being taken
in the sense of distributions) of order 1 belong to L%(Q), equipped with the semi-norm
1
Vg1 ) = (||arV||i%(Q) + IIGZVIIE(Q))Z
and norm

. 2 2 1

Remark 5.1. The definition can be extended in a natural way to H7'(Q) for an arbitrary integer m > 2 and
further, by interpolation, to H3 (Q) for non-integer s > 0.

We will also need the weighted space
V1(Q) := H}(Q)n L?,(Q),
equipped with the norm
Vlvioy = VI3 gy + Vi )

It can be proved [8, Proposition 4.1] that all functions in V% (Q) have anull trace on the part I'g of the boundary
contained in the z-axis.
We finally introduce the subspaces

L1 ,(Q) := {q ' qeLi(Q), j q(r,2)rdrdz = 0}, (5.12)
)
consisting of functions in L2(Q) with weighted integral equal to zero, and

H%O(Q) ={v|ve H}(Q), v=0onT}, V%O(Q) ={v|ve V%(Q), v=0onT},

consisting of functions in H%(Q) and V%(Q) that vanish on the part I' = 0Q\I'y of the boundary that is not
contained in the z-axis.
All spaces defined above are Hilbert spaces for the inner products associated with the given norms.
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5.3 Characterization of L2(Q) and L2(Q)

Recalling identity (5. 10) we let the right-hand side terms, for all k € Z, define spaces L2 0(Q) = = L2(Q) for the
Fourier coefficients g¥ of a function ¢ € L2((}), with norms

190, @ = 19"V 0 = [laPrarez. (5.13)
Q

Introducing the I,-sum (see [7, p. 63]) @Z{L (Q) | k € Z}, which is the subspace of the Cartesian product
X {L2 (Q) | k € 7} consisting of all sequences (q )kez for which the norm

1
. k2 2
1@,z @ikez) = (kgznq 122 )" < +oo, (5.14)

and combining (5.10) with (5.13)—(5.14), we obtain the following characterization of L2((Q).

Theorem 5.2. The mapping § — (q¥)kez, defined by (5.1) and (5.5), is an isometric isomorphism between

L2(Q) and the l5-sum EBz{L(k) Q) | k e z}:

1
= k z k
@ = (Y la "fzk><o>)2 = 1@, 12, @ikezs» (5.15)
keZ

where, for allk € Z, L 10 (Q) = L3(Q).
Since, for § € L2(Q), by (5.1) and (5.5),

J qd(x,y,z)dxdydz = J q(r,0,z)rdrdfdz = L Z J qk(r, z)e”‘gr drdfdz = V2nm J q°(r, z)rdrdz,
z % V2 keZ *

a Q Q Q
we also, recalling (5.12), obtain a characterization of the subspace L(Z)(Q) of L2(Q)).

Corollary 5.3. The mapping § — (q¥)kez, defined by (5.1) and (5.5), is an isometric isomorphism between
L3(Q) and the L-sum @,{Ly,, ,(Q) | k € Z}, where

L? ,(Q) ifk=0,
2 Q . 1,0
0.0l {L%(Q) if k#0,

and, for allk € Z, ||qk||L(2k)‘0(Q) = ||qk||L{(Q)-

5.4 Characterization of (H(Q))3 and (H}(Q))3

Similarly, led by the right-hand 51de terms in identity (5.11), for all k € Z, we define spaces H, (k)(Q) for the
Fourier coefficient triples vk = (vK, Ve’ vK)T of a vector function v € (H 1(())3, by the norms

k2 . k2 k2 k2
IV B, oy = [ (VA + VA2 + 4

2
kp2 k2 1+k k2, 20k g
+10pvy |7 + 102V |7 + Vil + —zvev
k2 k2 | 1+k 2 2tk gy
+[0,vgl® +10,vpl° + V] —r—zv Vo
10,2 410,52 + —Zlv’z‘lz)rdrdz. (5.16)
r

To see that (5.16) satisfies the properties of a norm, we consider the function E" € (HY(Q))3 corresponding to
a single Fourier coefficient v cH ( k)(Q):

1
VK(x, y, 2) 1= —=Rev (1, 20,

V2m
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and, from (5.11), note that
"V ”H1 N "Vk"(Hl(Q))B- (517)

From (5.17) and the norm properties of (H*(Q))>, we immediately get

k
v ||H<1k)(Q) >0,

IV NE @) = 0 = 1Py =0 & 7 =0 — V=0,
lev e, @) = 167 gz e = 1€l7 g gyye = 1V s )
IV + Wil o) = I7¢ +w"||(H1(Q,) 17 gy + 197 gy = 1 a ) + 1W¥ e, (o

Also from (5.17), the completeness of H (1k)(Q) is a consequence of the completeness of (H 1((3))3.
We now characterize the spaces H (1k) (Q) in terms of the weighted spaces defined in Section 5.2. Beginning
with the case k = 0, from (5.16),

"ZO "%1(1 ||VO||(LZ(Q )3 + ”V ” Vl(Q) + ”Vg” Vl(Q) + |V2|%I%(Q)7 (5-18)

and we deduce that
H{,(Q) = V1(Q) x V1(Q) x H{(Q). (5.19)

For the cases k = +1, (5.16) gives

+12 +1)2 +12 +1)2 +1)2
e, ) = 1 Wz + Ve T + 1V i + V2 T

1
+1|2 +1(V+1 =+1 V:lvgl))7d)’d2,

J Iv+1|2 +|V
Q
and by noting that
Vit £ vt |2 = (v £ v ) T ivgt) = ELP + IvETP £ i(vENE - vELED),
we obtain
”V_lllHl = ||f1||(2L§ )3 + 2"Vi1 1V91"L2 Q) + |V, |H1 + |V91|H1(Q) + ”V+1”V1(Q), (5-20)
from which we deduce that, for k = +1,
Hjy(Q) = V" | v¥ € H{(Q) x H}(Q) x V1(Q), v} +ikvl € L2, (Q)}. (5.21)

When |k| > 2, (5.16) gives
IVNE ) = 1V Wiy + 1V oy + (1 + k2>(||vk||iz @+ VlE o))

+ k2||VIz<||fgl(Q) +2ik J(vev - vkv’é) drdz. (5.22)
Q

Noting that l(vev -V Ve) 2 Im(v"ve), confirming that the right-hand sides are real for all k € Z, we can
estimate the last term

|21kJ vhvk - vkik) = drdzl < 4]k] jlvkllvel—drdz < 20KIVER: (o) + IVBIZ2. (),
Q Q

resulting in the inequalities

k2 k2 2 k2 k2 2y, ,ky2
”K "(L%(Q)P + |K |(H%(Q))3 + (|k| - 1) ("Vr ”LEI(Q) + ”VQHLEI(Q)) +k ”Vz"LEl(Q)
k2 k2 k2 2 k2 k2 2.,ky2
<|v "H(lk)(Q) <lv ”(L%(Q)P + v |(Hi(Q))3 + (kI + 1)~ (llv, ”Lgl(g) + ||V9"L§1(Q)) +k ”Vz"Lgl(Q)- (5.23)

Since |k| > 2, , ,
2 _ _l) 2.1, 2_( i) 2_9.
(k| - 1) _(1 ) Kz ks (ke = (1 ) K s 2
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which, combined with (5.23), shows that the norm | - || H, () is equivalent to the norm | - || H,.(0)}

1k k 3k
5"! ”H(lk)*(g) <lv ||H(1k)(g) < EHZ "H<1k)*(Q)y
where || - || Y, (@) is defined by
ky2 . k2 k2 214,k 12
"Z ”H(lk)*(g) = "Z "(L%(Q)P + |Z |(Hi(Q))3 +k "Z "(LEI(Q))B- (5.24)

We deduce that, for |k| > 2,
H{,(Q) = V1(Q) x V1(Q) x V{(Q). (5.25)

We summarize our results in the following characterization of (H! (Q))3.

Theorem 5.4. The mapping vV — (vV€)iez, defined by (5.3) and (5.6), is an isometric isomorphism between
(H'(Q))* and the Lr-sum @,{H,(Q) | k € Z}:

1
- _ k2 2 _ k
1l gy = (kzzuz @) = 10D, @z (5.26)
€

where, from (5.19), (5.21), (5.25),

VHQ) x V1(Q) x HH(Q) if k=0,
H{y(Q) := { {vk e HH(Q) x HH(Q) x VI(Q), vE +ikvK e L2 (Q)} if Ikl =1,
VHQ) x V1(Q) x V1(Q) if |k > 2,

and where the norms | - IIH(lk)(Q) are given by (5.18), (5.20), (5.22):

V5182 + IVEIG1 0y + VBT ) + IVET1 (0 if k=0,
IV G2y + 21VE +kVElE2 o) + VIR ) + VelTq) + VAl ) I 1K= 1,
k)2 k|2 2 k2 k2
"K(”(L%(Q))S + v |(Hi(0))3 + (1 +k5)(lvy "Lfl(g) + ||V9”L31(Q))
+k2 VAN, ) + 2ik [ (vivE - vivp) T drdz if |kl = 2.

k2
(a3

@ =

For |k| = 2, we can use the equivalent norm || - | Ly, (@ defined by (5.24):
ky2 k2 k2 20 kp12
v ”H(lk)*(Q) = ||V ||(L%(Q))3 +v |(H%(Q))3 +k v "(Lgl(Q))z-
Remark 5.5. Corresponding to (5.26), we restate (5.9) in terms of the inner products (-, -) HL(0) associated

with the norms || - | . (0)°

IRy Y k .k
(Z, H)(HI(Q)P = Z (Z W )H(lk)(Q)'
kez

Remark 5.6. For comparison, in Appendix A, we derive (5.18), (5.20), (5.22) by an alternative method used
in [5].

We now consider the subspace (Hcl)(fl))3 of (HY(Q))3. The corresponding subspaces of H (1,()((2) are
Hj,(Q) := Hjo (Q) 0 (H1, (Q)),

consisting of vector functions in H (1k)(Q) that vanish on the part T' = 0Q\I'y of the boundary that is not con-
tained in the z-axis. Since we use the semi-norm | - I( () &S anorm, equivalent to || - ||(H1(O))3’ on (Hé(f)))3,
we state the following representation of |- | ;n gy, which follows immediately from (5.11) by omitting the
terms corresponding to the (L2(Q))3-norm:

712 _ k2
Wl ayy = kezz Va0 (5.27)
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where we define

1+k? 2ik
k2 . k2 k2 k2 . vk
lv |H(1k)(Q) = J<|arvr| +10,vy]° + 7 [vil® + 72 VgVr
Q 1+k? 2ik
k|2 k2 k|2 7k
+[0rvgl= +10zvgl™ + —Q Vgl - _r2 v Vg

2
+OVER + 10,4 + |v’z‘|2)rdrdz.

Remark 5.7. The relation corresponding to (5.27) between the associated inner products (-, -) (H1())? and

(’)Hl

is
(k><> )

(V W)(Hl(Q))3 = Z(V » W )H(lk)O(Q). (5.28)

Forall ke Z, |-|u} (@ is a norm, equivalent to | - || H}(0)> O H (Q) This follows by again considering
a function v v € (H, { Q)3 corresponding to a single Founer coeff1c1ent v € H (Q):

1
K (x, y, 2) 1= —=Rev (r, 2)€™*?,

V2m
and noting that, by (5.27), the equivalence between | - |(H1(()))3 and | - ||(H1(()) 5 on (H(l,(fl))3, and (5.26),

V¥l @ = W@y 2 I @y = v, -
We get the following characterization of (Hé(Q))3.

Corollary 5.8. The mapping Vv — (vV€)icz, defined by (5.3) and (5.6), is an isometric isomorphism between
(H3(Q))* and the Ir-sum @,{H ,,(Q) | k € Z}:

)
V] g2 iy = (k§Z|zk|%,(1k)(Q))2 = 105, a2, (@ikezs (5.29)
where
16(Q) x V1,(Q) x H{ ,(Q) ifk=0
H}o Q) = { (vF € HI(Q) x H (Q) x V1,(Q), v +ikvE e L2, (Q)} if [k =1,
Vio(Q) x Vi, (Q) x Vi, (Q) if k| > 2,
and
V¥ I3y + VBT ) + 1VE T 0 if k=0,
1" g 0 = Vil + Vol @) + IVEIT ) +2||Vk+”“’15"f31<m if 1kl =1,

IV Gy + (1 + kz)(llkaILz @t ||v9||Lz (@)
+k2||v’Z‘||L31(Q)+21kIQ(v9 k_vkikyldrdz  if [k > 2.

For |k| > 2, we can use the equivalent norm | - | Yy, (@ defined by

k|2 . k|2 2114, k12
lv |H(1k)*(0) =y |(H%(Q))3 +k°|lv ||(L31(Q))3'

5.5 Characterization of (H-1(Q))3

For f € (H1(Q))3, from the Riesz representation theorem, we deduce the existence of (a unique)
Wy e (HY(Q),  with Ifll oy = Wrl gy

such that, for all ¥ € (H}(Q))?,

- Z<f V>H(k) )xHY

()<

(f V) (H1 ()3 x(HL ()3 = (Wf, V) =) T z (Wf’ 14 )Hl Q> (5.30)

(ko
keZ keZ

where we have used (5.28), and H (*,})(Q) denotes the dual space of H (1k) o(Q).
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Remark 5.9. Forf € (L2(Q))3, we have

£, 2) = V%T J(R_gf)(r, 6, 2)e ¥ dg,

and we can write the duality pairings as integrals

(f V>(H 1(0))3X(H1(Q) (Z V) dX dy dZ,

v i @t @) = | (- 7O drdz, (5.31)

b'— D“—,

From (5.29) and the definition (5.30) off", we get
11y = A e = Z Wiz, @) = Z F T

which gives the following characterization of (H™1(Q))3.

Theorem 5.10. The mappingf — ()_"‘)kez, defined by (5.30), is an isometric isomorphism between (H1(Q))?
and the l-sum @Z{H(‘kl)(()) | k € Z}:

1
k2 2 k
@y = (XM o))" = 1, e

kez

6 Two-Dimensional Problems

In this section, we state variational formulations of the two-dimensional problems for the Fourier coefficients,
which are set in the spaces from the previous section. We show existence, uniqueness and stability from
inf-sup conditions. We conclude by discussing some features of the special case with axisymmetric data.

6.1 Variational Formulation

Introducing, for all k € Z, the sesquilinear forms

Ar(u, v) = (u, Z)H(lk)o(g)

} _oo1+k 21k

= j(a,u,a,v, +0zUr0zVr + —5—UWVr + —7 Uevr
r

Q 1+k%

+ 0yUQgO,Vg + O,Ug0, Vg + 5

ik
Ugvg — r—zu,ve

_ <
+ 0yUz0;V, + O,U0, V5 + r—zuzvz)rdr dz,

Br(v, q) == - I(din v)grdrdz = - J(a,(rvr) +ikvg + 0,(rv;))qdrdz,
Q Q

where divy is defined by (4.6), we consider the following variational formulation of (4.5):
Find
(", p*) € Hpy (Q) x L, o(Q),  where u* - g* € Hjy (Q),

such that, for all (v, ) € H,(Q) x Ly, ,(Q),
{Ak(ﬂ , V) + Bi(v, p¥) = (lfk’K>H(‘k1)(Q xH. (Q)?

o (6.1)
Brwk, q)=0
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Remark 6.1. Note that the term By is conjugated in the first equation in (6.1), making the sesquilinear form

Mi((u, p), (v, q)) := Ax(u, v) + Bi(v, p) + Br(u, q)
Hermitian.

Remark 6.2. We use the same notation g" for the Fourier coefficients of the Dirichlet boundary data g, and
their hftmgs in H 1 (). Existence of these liftings follows from the three-dimensional trace theorem since
g € (H? (09))3 and thus again using the same notation, admits a lifting g §e(H 1(Q))3.

Remark 6.3. For )_“ € (L2(Q))3, we can, as noted in (5.31), write the duality pairings as integrals

= j(]_fk -Vrdrdz.

Q

<f V>H(k> Q)xH ), (Q

Remark 6.4. The sesquilinear forms Ag(-,-)and By(-, -) arerelated to the corresponding sesquilinear forms

A, V) = (@ V) g ayp = jg@dg : grad Vdxdydz, (7, ) = - j(divz“)édx dydz,
Q o]
in the following mixed formulation of the three-dimensional problem (2.1):
Find (&, p) € (H'(Q))? x L§(Q)), where il - § € (H}(Q))?, such that, for all (7, §) € (Hy(Q))? x L§(Q),

{d(g’ 2) + B Z <Z E (H- l(g )3><(H1(Q))3’
b, §) =
by the relations
= Y Ak, Vb, (6.2)
kez
b, q) =Y Bk, gh), (6.3)
kez

where (6.2) is a restatement of (5.28), and (6.3) is an analogous consequence of (3.6) and the orthogonality
on [, 1] of the family {e'*®};*° _ of basis functions (cf. (5.7)).

6.2 Well-Posedness

Setting uk = u0 + g we rewrite (6.1) as follows:
Find (uo, ke HL (Q)x L(k) o(Q) such that, for all (v, q) € H!

{«Ak(Eo’Z) +Br(v, pF) = (F, Vg1 g

(Q) x L2 o(Q),

(o (k)o

><H Q) _‘Ak(‘g ,K),

(k) (k)<>

Bi(us, q) = -Br(g", @).
Since Ak(-, -) is a nonnegative, Hermitian form, where Ay (v, v) = |v| fil (@) we have

1
WA, V)] < A, WA, v)? = ulg, @) Vla )

(k)
showing coercivity of Ax(-,-) on H 1o (), continuity of Ax(-,-)on H(k)Q(Q) X H(k)Q(Q), and
Ak(gk,') € H(_k)(Q) with ||Ak(§ ,')"H(*kl)(g) < Ig |H(1k)(9)'
Again considering functions corresponding to a single Fourier coefficient

1
x,y,2) = ﬁﬂzevk(r 2)elkd,

——qk(r, 2)e™®, (6.4)

=k
q (x,y,2) = \/_
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we note from (6.3), the continuity of the three-dimensional form b(-, -), (5.27) and (5.15) that
BV, ¢ = 1B, 4 < V31V g yo 19" 2y = V3IV¥lr o 19412 )

which shows continuity of By(-,-) on HY. (Q)x L2 . 0.0(Q), and

(o

Bi(g", ) € Ly o " with IBi(g", iz, () < V318 Im, -

The inf-sup condition for B(-,-) on H, (1k) o(Q) x L(zk) o(Q) that there exists a positive constant (indepen-
dent of k) such that,
1Bi(vK, g9

for all g* € L3 .0(Q), sup —=11 7> ﬁ||qk||L%(Q)

vkeH(y, (Q) lv |H<1k>

follows from the three-dimensional inf-sup condition, from which, for an arbitrary g* € L(k) 0(Q) and corre-
sponding ¥ e L(Z)(Q) given by (6.4), we deduce that there exists w € (H, 1(Q)) such that, for its k-th Fourier
coefficient w € H(lk) o(Q),

Bew*, g1 1Bk, g1 _ 1bGw, g4

Wi @ Wan@y  Wlanay

> BIG" 25 = Bla* Iz -

We have thus proved (see, e.g., [4, Theorem 4.2.3]) the following theorem.

Theorem 6.5. Forf e (HY(Q))? and §e(H? 3(0Q))3, where g° satisfies the compatibility condition (4.7), the
variational formulations (6.1) have unique solutions for all k € Z. The solutions are bounded, uniformly in k, by

k k k k
llu ”H(lk)(Q) +lp ”L%(Q) < C(If ||HEk1)(Q) +1g "H(lk)(Q))- (6.5)

6.3 Axisymmetric Data

For ax1symmetr1c data, i.e., only f0 and g are non-zero, it follows immediately from uniqueness that only u°
and p° are non-zero, which means that ‘the solution will also be ax1symmetnc Also note that problem (6.1)
for k = 0 decouples into two independent problems: one for (u?, u2, p®) and one for ”e- If the data are real-
valued, these problems have real-valued solutions.

7 Anisotropic Spaces

We introduce two families H***(Q) of anisotropic spaces, where s is a nonnegative real number measuring
“extra regularity” in the angular direction, that we (following [3]) will use to derive an estimate of the error
due to Fourier truncation in Section 8.

When s is a nonnegative integer, we define

H*15(Q) := {V | RgohR_gV € (H(Q))*, 0< 1<},

equipped with the norms
17015 ( X I N ) (7.1)

Note that H*1°(Q) = (H*'(Q))3. The norms defined by (7.1) are equivalent to the natural norms

)%, (7.2)

(H=1(Q))?

S
(Y 1Re0hR o1
=0

as we show in the following lemma.
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Lemma 7.1. For any nonnegative integer s, the norms defined by (7.1) are equivalent to the natural norms
defined by (7.2).

Proof. Letv e H*%5(Q) and 0 < I < s. From the Fourier expansions

ReOLR_gV(x, Y, 2) = Y Ro(ik)vH(r, 2)e'*?

1
V2 kez

and Theorem 5.4/5.10 (for H>*(Q) and H~(Q), respectively), we get

S
I_Z()||ﬂzealﬂzev||2,{ﬂ(m ZZu(zk)’v"nzﬂ(m Z(Zk”)ﬂvkuml

=0 keZ
from which the result follows. O

We generalize by extending the norms defined by (7.1) to an arbitrary nonnegative real number s:

Hil,S(Q) = { | "V”H*U(Q) = (Z 1+ kz) ||Vk||H+1(Q ); < +OO}. (7.3)

8 Error Due to Fourier Truncation
Introducing the truncated Fourier series

- 1 k k0 o
UNy = — Rou*(r, z)e"?, N (r,2)e!
i) = == |k|zgv u P = _lklzwp

we prove the following estimate of the error due to Fourier truncation.

Theorem 8.1. Let s be a nonnegative real number. If the data (f g) of (2.1) belong to H™ " S(Q) x H-S(Q), the
following error estimate holds between the solution (i, p) and its truncated Fourier series (tny, DN]):

"E _E[N] ||(H1(Q))3 + ”ﬁ _ﬁ[N] ”LZ(Q) < CN?S("]_Z‘”H*LS(Q) + ”g”HLS(Q))-

Proof. Using the isometries (5.15) and (5.26), together with the regularity estimate (6.5) and the definitions
of the anisotropic norms (7.3), we have

k_iko|)?
el §
L*(Q)

1
N - dipl2,, <+ 15— Bl = ||— Rouke l""|| ||
(H' (@) @2 |,<|Z>N @@y 1vV2m ,k| N

= 2 (I o)+ IPMI5 )
|k|>N

<2C7 3 (F N 0+ 181, o)
LY ®
<2CN72 Y A+ K (U s ) + 18 5 ()
- (k) - (k)
|k|>N
< 2C°N(IfI7- )- D

+ gl

RO IR (o)

Remark 8.2. As emphasized in [2], the error from Fourier truncation only depends on the regularity of the
data (f , §), not on the regularity of the solution (&, p) (which is geometry dependent). This means that, for
regular (with respect to 8) data, a small value for N suffices.
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A Comparison with Costabel, Dauge and Hu

In [5], characterization of H™ () by Fourier coefficients (for any positive integer m) is treated first; then the
relation (see [5, Proposition 6.1])

1 1
k2 _ ks kg2 ks k)2 k2
"K ”Hlk Q) — _”Vr + 1V9"Hl ) Q) + Ellvr - lvgquk_1 Q) + ”Vz"Hl (Q)’ (Al)

linking vector H: )(Q) norms and scalar H (Q) -norms, is used to derive characterizations of (H™(Q))3.
Inthe present work, we have derived the charactenzatlon of (H(Q))3 in Theorem 5.4 by directly rewriting
the (H!(Q)))3-norm, where the decomposition (5.11) resulted in the H (k)(Q)-norms given by (5.18) for k = 0,
by (5.20) for |k| = 1, and by (5.22) for |k| > 2.
To compare the methods, we first note that

2 2 s _
"V"L%(Q) + |V|Hi(9) ifk=0

2
v (A.2)
” "H(lk)(g)

2 2 2 2 :
"V"L%(Q) + |V|Hi(Q) +k ||V||L§1(Q) if |k| 2 1:

which follows, as in Section 5.1, by expressing the H(Q)-inner product in cylindrical coordinates and using
Fourier expansions:

—_—

U, Vg = (TV + Ox Oy V + Oy UdyV + 9,110,V) dx dy dz

= (uV + 0,U0,V + rizaeuam? + azuazv)rdr dodz

a

—Z ukvk + 0,uko,v* + o,uko,v +Euv rdrdz = Z(u vk

= r r Z Z r2 H(k)(Q)'
keZQ kez

From (A.1), (A.2), and the polarization identity
la + bl* + lla - blI* = 2(lal* + Ib]?),
we then get, for k = 0,

1
02 — 2O o 3,012 110 _ 3,002 02
"K "H(lo)(Q) = P "Vr + lVgllH(ll)(Q) + P "Vr lVg”H(l?l)(Q) + ”Vz "H(lo)(Q)

1 =072 0 . 2 0 . 2
- 5(||v9 + Vgl ) + V7 + Vgl ) + V7 + ivgliZz o
0 .02 0 .02 0 .02 02 0,2
+ vy - 1v9||L%(Q) + vy - lV9|H%(Q) + vy - lv9||L31(Q)) + vy ||L%(Q) + |vZ|H%(Q)
— 02 02 02 0,2 0,2 02 02 0,2
= vy ”LZ(Q) + "VgllLZ(Q + vy ||L2(Q) + IvrlH%(Q) + |V9|H%(Q) + v, "LL(Q) + ”Vg”]_fl(g) + |Vz|Hi(Q)
"V ”(LZ(Q )3 + ”V "Vl(Q) + ”Vg”Vl(Q) + |V2|12-1%(Q),
which is the same as (5.18).
Similarly, for |k| = 1, we get

+1 +1 —

+1 +1 + +1
"V "H 1)(9 "V +1V9 "Hl (Q)+ "V +lV9 "Hl (Q)+||Vz "Hl Q)

+1
= —(IIV, +ivy IILz(Q)+||v, Fivy IILz(Q)+|v, +ivy |H1(0)+|v, Fivy IHl(Q))

+2|lvit

+1 + +12 +
+ivy ||L2 )+ [vit ||Lz(Q) +|vi |H1 @t [vit ||L31(Q)

+1 +1 1
= ”V:— ”LZ (Q) + "Vg "LZ(Q) + |V+ |H1(Q) + |V9 |H1(Q

+ +1 +1 +
+2lvit + ivy ||Lz )+ IvE IILZ(Q) +[vil ”Vl(Q)

+ 1

= ”K ”(L%(Q)ﬁ + 2||Vr t lVg ||L2 Q) + |V, |H1(Q) + |V9 |H1(Q) + ||Vz ||V1(Q)9

which is the same as (5.20).
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Finally, for |k| > 2 (noting that |k + 1] > 1), we get

1
k2 _ Lk kg2 Lok kg2 ky2
"Z "H(lk)(Q) ) ||v, * lvellH(lkﬂ)(Q) * 2 ||Vr 1V9||H<1k71)(0) * ||VZ ”H(lk)(Q)

1ok k2 kK aoky2 K, k|2 kK :okp2
= E(||v, + 1V9||L§(Q) + vy - 1v9||L%(Q) + vy + 1V9|Hi(g) + vy - ’V9|H§(Q)

+(k+ DXV +iviliEe ) + (k= DIvE = ivgliE o) + IVEIZ2 ) + VAR o) + K2 IVEIE2, ()

k)2 k)2 k2 k2 k2 k)2
vy ||L§(Q) + ”V@"L%(Q) + ||vz||L%(Q) + vy |H%(Q) + |V9|H%(Q) + |Vz|H%(Q)

211,k 12 k2 291 k12
+(1+k )(||V, "Lfl(g) + ”VQHLEI(Q)) +k ”Vz"Lgl(Q)
K, sokp2 Kk sokp2
+k(llvy + lv9||L31(Q) = lvy - 1v§||L51(Q))
ky2 k2 2y(11,k 12 ky2
= I Nz + 1 Ny + (2 + KO(VENE:, (@) + Wallz2, )

: B} ol
+ I IVEIE:, (g + 21k J(v’gv’; - v’;v’g‘)? drdz,
Q

which is the same as (5.22).

In conclusion, the H (1k) (Q)-norms for the Fourier coefficient spaces that we have derived by directly rewrit-
ing the (H 1(Q))3-norm are the same as those obtained from relation (A.1). In addition to conveying struc-
tural understanding, relation (A.1) also facilitates the general study, by induction, for positive integer order
Sobolev spaces carried out in [5]. For our exposition, directly aimed at the Stokes problem, the method we
have chosen is straightforward to follow. The same remark can be made as to the difference between intro-
ducing the differential operators d¢ = %(ax —i0y) and a; = %(ax +10y) in [5], and our choice of working
directly with 0, and o,,.
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