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Abstract:We develop a framework for solving the stationary, incompressible Stokes equations in an axisym-
metric domain. By means of Fourier expansion with respect to the angular variable, the three-dimensional
Stokes problem is reduced to an equivalent, countable family of decoupled two-dimensional problems. By
using decomposition of three-dimensional Sobolev norms, we derive natural variational spaces for the two-
dimensional problems, and show that the variational formulations are well-posed. We analyze the error due
to Fourier truncation and conclude that, for data that are sufficiently regular, it suffices to solve a small num-
ber of two-dimensional problems.
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1 Introduction
To determine approximate solutions to fluid flow problems in three-dimensional geometries is a computa-
tionally demanding task. In this paper, we present a framework for efficiently solving the stationary, incom-
pressible Stokes equations in an axisymmetric domain Ω̆, which is obtained by rotating its half section Ω
around the symmetry axis.

We use Fourier expansions with respect to the angular variable θ, both of the solution and the data, to
reduce the three-dimensional Stokes problem to an equivalent, countable family of decoupled two-dimen-
sional problems (set in Ω) for the Fourier coefficients. A natural way to approximate the three-dimensional
problem is then to use Fourier truncation and, to obtain a fully discrete scheme, compute approximate solu-
tions to a finite number of the two-dimensional problems.

This is an established technique to approximate boundary value problems that are invariant by rotation.
Early error analysis results for second-order elliptic problems can be found in [8] and for Poisson’s equation
in domains with reentrant edges in [6], both using finite element approximation for the two-dimensional
problems. We refer to [5] for additional references to problems described by Laplace or wave equations, the
Lamé system, Stokes or Navier–Stokes systems, and Maxwell’s equations, and to [6] for early references to
algorithms and applications.

We analyze the error due to Fourier truncation and show that, for data that are sufficiently regular with
respect to θ, it suffices to solve a small number of two-dimensional problems, which makes the method effi-
cient. Also, the decoupling of the two-dimensional problems makes it suitable for parallel implementation.
A further advantage is simplification of the mesh-generation, which is only required for the two-dimensional
half section Ω.

*Corresponding author: Niklas Ericsson, Department of Engineering Science, University West, SE–461 86 Trollhättan; and
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE–412 96 Gothen-
burg, Sweden, e-mail: niklas.ericsson@hv.se. https://orcid.org/0000-0001-7510-9906

Open Access. ©2021 Ericsson, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.



792 | N. Ericsson, Stokes Equations in an Axisymmetric Domain

An added complexity is that the natural, variational spaces for the Fourier coefficients turn out to be
weighted Sobolev spaces, where the weight is either the distance to the symmetry axis, or its inverse. We
derive these spaces by decomposing (through a change of variables to cylindrical coordinates) the three-
dimensional norms for the relevant spaces L2(Ω̆), L20(Ω̆), (H1(Ω̆))3, (H1

0(Ω̆))3 and (H−1(Ω̆))3 into sums over
all wavenumbers. As a result, we show that the three-dimensional spaces are isometrically isomorphic to
a certain subspace of the Cartesian product, over all wavenumbers, of the two-dimensional weighted spaces.

The characterizations of the three-dimensional spaces thus obtained are in agreement with the results
in [3],where characterizations ofHs(Ω̆) and (Hs(Ω̆))3 byFourier coefficients for anypositive real s are derived;
here non-integer order spaces are treated first, and the derivation for integer order spaces is then based on
Hilbert space interpolation.

As recently shown in [5], the more direct approach for Sobolev spaces of integer order (based on chang-
ing to cylindrical coordinates in the three-dimensional norms) results in equivalent norms (compared with
the norms in [3]), but where the equivalence constants (unlike in [3]) are independent of the domain. In [5],
characterizations of Hm(Ω̆) by Fourier coefficients for any positive integer m are facilitated by the introduc-
tion of new differential operators ∂ζ = 1

√2 (∂x − i∂y) and ∂ ̄ζ =
1
√2 (∂x + i∂y). The results for vector spaces are

then derived from a relation between scalar and vector norms for the Fourier coefficients. In this paper, we
work with the differential operators ∂x and ∂y and, in the vector case, derive the characterization by directly
rewriting the (H1(Ω̆))3-norm.We compare our results with [5] in Appendix A.We also refer to the early results
in [8], where this direct approach was used to characterize the scalar spaces Hm(Ω̆) for m = 1, 2, 3.

The purpose of the present work is to give a comprehensive presentation directly aimed at the Stokes
problemproviding, inter alia, detailed derivations of the relevant two-dimensional spaces and norms. Taking
as starting-point, in fact, Fourier decompositions of the three-dimensional inner products

( ⋅ , ⋅ )L2(Ω̆), ( ⋅ , ⋅ )(H1(Ω̆))3 and ( ⋅ , ⋅ )(H1
0(Ω̆))3

additionally enables us to derive a decomposition of the negative norm ‖ ⋅ ‖(H−1(Ω̆))3 and to highlight the
relation between the three-dimensional weak formulation of the Stokes problem and the two-dimensional
weak formulations for the Fourier coefficients.

Examples of how to build on this framework by discretizing the two-dimensional problems can be found
in [3], where spectral methods are used, and [2], where two families of finite elements of order 2 (one with
continuous pressure corresponding to the Taylor–Hood element and one with discontinuous pressure) are
used. The case with an axisymmetric solution (where only the Fourier coefficient of order 0 is considered,
and the angular velocity component is equal to zero), has been treated with finite elements in [1, 9, 10].

A paper in preparation will be devoted to design and analysis of stabilized finite elements for the two-
dimensional problems.

An outline of the paper is as follows.
∙ In Section 2, we give some examples of axisymmetric domains and state the stationary, incompressible

Stokes equations.
∙ In Section 3, we recall some basic formulas and state the Stokes problem in cylindrical coordinates.
∙ In Section 4, we use Fourier expansion with respect to the angular variable to reduce the three-dimen-

sional Stokes problem to a countable family of two-dimensional problems.
∙ In Section 5,we derive natural variational spaces for the Fourier coefficients by decomposing the relevant

three-dimensional norms into sums over all wavenumbers.
∙ In Section 6, we state variational formulations of the two-dimensional problems and show that these are

well-posed.
∙ In Section 7, we introduce two families of anisotropic spaces that we need to analyze the error due to

Fourier truncation.
∙ In Section 8, we prove an error estimate due to Fourier truncation.
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Figure 1: A right circular cylinder. The axisymmetric domain Ω̆ is obtained by rotating its polygonal half section (meridian
domain) Ω around the z-axis. The boundary ∂Ω = Γ ∪ Γ0 of the half section Ω consists of two parts. Γ0 is the interior of the part
of ∂Ω contained in the z-axis. Rotating the other part, Γ, around the z-axis gives back ∂Ω̆.
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Figure 2: A right circular cylinder with a hole.
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Figure 3: A right circular cone with a hole. Each corner of Ω contained in the z-axis corresponds to a conical singularity in ∂Ω̆,
except if the opening angle of Ω at this point is π/2. Each remaining corner of Ω generates an edge in ∂Ω̆.

2 Model Description
We consider fluid flow in a bounded domain Ω̆which is invariant by rotation around an axis.We begin by dis-
cussing, and give a few examples of, such domains, following the notation in [3].We then state the stationary,
incompressible Stokes equations, which we use to model the flow.

2.1 Axisymmetric Domains

An example of an axisymmetric domain Ω̆ is given in Figure 1. The axisymmetric domain is obtained by
rotating its half section (meridian domain) Ω around the symmetry axis. We assume that Ω is polygonal. Note
that the boundary ∂Ω = Γ ∪ Γ0 of the half section Ω consists of two parts where Γ0, the interior of the part of
∂Ω contained in the symmetry axis, is a kind of artificial boundary. Two further examples of axisymmetric
domains, and their half sections, are given in Figure 2 and Figure 3.

Remark 2.1. In [3], Γ0 is assumed to be theunionof a finite number of segmentswith positivemeasure,which
means that Ω is not allowed to meet the symmetry axis at isolated points. This assumption, as noted in [5],
implies that Ω̆ (as well as its polygonal half section) is a Lipschitz domain, and it guarantees existence of cer-
tain trace operators, needed since [3] uses vanishing traces on Γ0 in the definition of the Fourier coefficient
spaces. The more direct approach for integer order Sobolev spaces used in this paper, and more generally
in [5], allows for more general axisymmetric domains whose intersection with the symmetry axis is not
necessarily a union of intervals and where the trace operators are not well defined.
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2.2 Stokes Problem

Wemodel fluid flow through an axisymmetric domain Ω̆ by the stationary, incompressible Stokes equations

{{{
{{{
{

− ∆ ̆u + grad ̆p = ̆f in Ω̆,

div ̆u = 0 in Ω̆,
̆u = ̆g on ∂Ω̆,

(2.1)

where the unknowns are the velocity ̆u and the pressure ̆p

̆u = ̆uxex + ̆uyey + ̆uzez ∈ (H1(Ω̆))3, ̆p ∈ L20(Ω̆),

and the data are the source term ̆f and the Dirichlet boundary data ̆g,

̆f = ̆f xex + ̆f yey + ̆f zez ∈ (H−1(Ω̆))3,

̆g = ̆gxex + ̆gyey + ̆gzez ∈ (H
1
2 (∂Ω̆))3.

For a vector field ̆v = ̆vxex + ̆vyey + ̆vzez defined on Ω̆, we will let ̆v denote both the vector field itself and its
Cartesian component vector ( ̆vx , ̆vy , ̆vz)T . Note that the divergence-free property div ̆u = 0 implies a necessary
compatibility (zero flux) condition on ̆g:

∫

∂Ω̆

̆g ⋅ ̆n dĂ = 0, (2.2)

where ̆n denotes the unit outward normal vector to Ω̆ on ∂Ω̆, and dĂ is (the magnitude of) the area element
on ∂Ω̆.

We recall the standard definitions of the Lebesgue and Sobolev spaces (with all derivatives being taken
in the sense of distributions)

L2(Ω̆) := { ̆q

̆q : Ω̆ → ℂmeasurable,∫

Ω̆

| ̆q|2 dx dy dz < +∞},

H1(Ω̆) := { ̆v | ̆v ∈ L2(Ω̆), ∂x ̆v ∈ L2(Ω̆), ∂y ̆v ∈ L2(Ω̆), ∂z ̆v ∈ L2(Ω̆)},

with norms

‖ ̆q‖L2(Ω̆) := (∫
Ω̆

| ̆q|2 dx dy dz)
1
2
, ‖ ̆v‖H1(Ω̆) := (‖ ̆v‖

2
L2(Ω̆) + ‖∂x ̆v‖

2
L2(Ω̆) + ‖∂y ̆v‖

2
L2(Ω̆) + ‖∂z ̆v‖

2
L2(Ω̆))

1
2 ,

and the corresponding inner products ( ⋅ , ⋅ )L2(Ω̆) and ( ⋅ , ⋅ )H1(Ω̆).

Remark 2.2. We consider spaces of complex-valued functions. In Section 4, we will use Fourier expansions
of the data and the unknowns to reduce the three-dimensional Stokes problem in Ω̆ to a countable family
of two-dimensional problems in the half section Ω. Since the Fourier coefficients (also for real-valued func-
tions) are complex-valued, the two-dimensional variational spaces that we will define in Section 5 will be
spaces of complex-valued functions. Since the interplay between the three- and two-dimensional spaces,
which will play an important part in what follows, is developed most naturally when all spaces contain
complex-valued functions, we will use that also for the three-dimensional spaces, even though in practice
the three-dimensional data and solution will be real-valued.

We also recall the subspaces

L20(Ω̆) := { ̆q

̆q ∈ L2(Ω̆),∫

Ω̆

̆q dx dy dz = 0}, H1
0(Ω̆) := { ̆v | ̆v ∈ H1(Ω̆), ̆v = 0 on ∂Ω̆},

and the dual of H1
0(Ω̆):

H−1(Ω̆) := (H1
0(Ω̆))∗.
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Remark 2.3. By the dual space H∗, we mean the linear space of continuous anti-linear functionals on H so
that, in particular, (u, v)H = ⟨u, v⟩H∗×H when u, v ∈ H.

On H1
0(Ω̆), we will use the semi-norm

| ̆v|H1(Ω̆) := (‖∂x ̆v‖2L2(Ω̆) + ‖∂y ̆v‖
2
L2(Ω̆) + ‖∂z ̆v‖

2
L2(Ω̆))

1
2 ,

which is a norm, equivalent to ‖ ⋅ ‖H1(Ω̆), on H1
0(Ω̆), and the corresponding inner product ( ⋅ , ⋅ )H1

0(Ω̆)
.

Denoting by γ0 the linear and continuous trace operator defined on H1(Ω̆), we have

H
1
2 (∂Ω̆) := γ0(H1(Ω̆)),

with norm
‖ ̆g‖H 1

2 (∂Ω̆) := inf
̆v∈H1(Ω̆)
γ0 ̆v= ̆g

‖ ̆v‖H1(Ω̆).

3 Cylindrical Coordinates
Since thedomain Ω̆ is axisymmetric,we change fromCartesian coordinates (x, y, z) inℝ ×ℝ ×ℝ to cylindrical
coordinates (r, θ, z) inℝ+ × (−π, π] ×ℝ, where

{{{{
{{{{
{

r = √x2 + y2,

θ =
{
{
{

− arccos x
r if y < 0,

arccos x
r if y ≥ 0.

We define Ω̃ as the product of the half section Ω and (−π, π],

Ω̃ := {(r, θ, z) | (r, z) ∈ Ω, −π < θ ≤ π} (3.1)

and, by analogy,
Γ̃ := {(r, θ, z) | (r, z) ∈ Γ, −π < θ ≤ π},

where Ω̃ and Γ̃ are point sets in cylindrical coordinates corresponding to the domain Ω̆ and its boundary ∂Ω̆,
respectively.

3.1 Basic Formulas

We recall the identities (see Figure 4 for an illustration in the xy-plane)

∂x = cos θ∂r −
1
r
sin θ∂θ , ∂y = sin θ∂r +

1
r
cos θ∂θ , (3.2)

ex = cos θ er − sin θ eθ , ey = sin θ er + cos θ eθ ,

x

y

ex

ey r θ

er
eθ

v̆ = v̆xex + v̆yey = vrer + vθeθ

P

Figure 4: A point P with Cartesian coordinates (x, y) and cylindrical coordinates (r, θ), where x = r cos θ and y = r sin θ.
A vector ̆v, with tail in P, with Cartesian components ( ̆vx , ̆vy)T and cylindrical components (vr , vθ)T .
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relating the partial derivatives and the orthonormal basis vectors of the Cartesian and cylindrical coordinate
systems, and

̆vx = cos θvr − sin θvθ , ̆vy = sin θvr + cos θvθ , ̆vz = vz , (3.3)

relating the component vectors ̆v = ( ̆vx , ̆vy , ̆vz)T and v = (vr , vθ , vz)T of a vector field

̆v = ̆vxex + ̆vyey + ̆vzez = vrer + vθeθ + vzez

expressed in the two coordinate systems. We will write (3.3) in matrix form ̆v = Rθv, where

Rθ =(
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

) .

From these identities follow the formulas for the gradient and the Laplacian operator acting on a scalar
function ̆v(x, y, z) = v(r, θ, z),

grad ̆v = ∂x ̆vex + ∂y ̆vey + ∂z ̆vez = ∂rver +
1
r
∂θveθ + ∂zvez , (3.4)

∆ ̆v = ∂2x ̆v + ∂2y ̆v + ∂2z ̆v = ∂2r v +
1
r
∂rv +

1
r2
∂2θv + ∂

2
z v =

1
r
∂r(r∂rv) +

1
r2
∂2θv + ∂

2
z v (3.5)

and, for the divergence and the vector Laplacian operator acting on a vector function ̆v(x, y, z) = Rθv(r, θ, z),

div ̆v = ∂x ̆vx + ∂y ̆vy + ∂z ̆vz = ∂rvr +
1
r
vr +

1
r
∂θvθ + ∂zvz =

1
r
∂r(rvr) +

1
r
∂θvθ + ∂zvz , (3.6)

∆ ̆v = (∂2x ̆vx + ∂2y ̆vx + ∂2z ̆vx)ex + (∂2x ̆vy + ∂2y ̆vy + ∂2z ̆vy)ey + (∂2x ̆vz + ∂2y ̆vz + ∂2z ̆vz)ez

= (
1
r
∂r(r∂rvr) +

1
r2
∂2θvr + ∂

2
z vr −

1
r2
vr −

2
r2
∂θvθ)er

+ (
1
r
∂r(r∂rvθ) +

1
r2
∂2θvθ + ∂

2
z vθ −

1
r2
vθ +

2
r2
∂θvr)eθ + (

1
r
∂r(r∂rvz) +

1
r2
∂2θvz + ∂

2
z vz)ez , (3.7)

where the last two terms in the radial and angular components of ∆ ̆v result from the θ-dependence of
er = cos θ ex + sin θ ey and eθ = − sin θ ex + cos θ ey, by the relations ∂θer = eθ and ∂θeθ = −er.

3.2 Stokes Problem in Cylindrical Coordinates

Expressing both the data and the unknowns in cylindrical coordinates

̆u = ̆uxex + ̆uyey + ̆uzez = urer + uθeθ + uzez ,
̆p = p,
̆f = ̆f xex + ̆f yey + ̆f zez = frer + fθeθ + fzez ,
̆g = ̆gxex + ̆gyey + ̆gzez = grer + gθeθ + gzez ,

where u = (ur , uθ , uz)T , p, and f = (fr , fθ , fz)T are functions (distributions) on Ω̃ and g = (gr , gθ , gz)T on Γ̃,
from (3.4)–(3.7), we can write the Stokes problem (2.1) in cylindrical coordinates

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

− ∆ur +
1
r2
ur +

2
r2
∂θuθ + ∂rp = fr in Ω̃,

−∆uθ +
1
r2
uθ −

2
r2
∂θur +

1
r
∂θp = fθ in Ω̃,

−∆uz + ∂zp = fz in Ω̃,
1
r
∂r(rur) +

1
r
∂θuθ + ∂zuz = 0 in Ω̃,

u = g on Γ̃,

(3.8)

where, from (3.5),
∆v = 1

r
∂r(r∂rv) +

1
r2
∂2θv + ∂

2
z v.
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4 Fourier Expansion
A natural way to reduce the three-dimensional Stokes problem (3.8) in Ω̃ to a countable family of two-dimen-
sional problems in Ω is to use Fourier expansion with respect to the angular variable θ, both of the solution

u(r, θ, z) = 1
√2π
∑
k∈ℤ

uk(r, z)eikθ , (4.1)

p(r, θ, z) = 1
√2π
∑
k∈ℤ

pk(r, z)eikθ , (4.2)

where uk = (ukr , ukθ , u
k
z )T , and of the data

f (r, θ, z) = 1
√2π
∑
k∈ℤ

f k(r, z)eikθ , (4.3)

g(r, θ, z) = 1
√2π
∑
k∈ℤ

gk(r, z)eikθ . (4.4)

4.1 Two-Dimensional Problems

Inserting theFourier expansions (4.1)–(4.4) into (3.8) results, since the Stokes problem is linear and invariant
by rotation (whichmeans that the coefficients of the Stokes operator in cylindrical coordinates do not depend
on θ), in uncoupled two-dimensional problems for each Fourier coefficient pair (uk , pk), k ∈ ℤ:

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

− ∆aukr +
1 + k2
r2

ukr +
2ik
r2

ukθ + ∂rp
k = f kr in Ω,

−∆aukθ +
1 + k2
r2

ukθ −
2ik
r2

ukr +
ik
r
pk = f kθ in Ω,

−∆aukz +
k2

r2
ukz + ∂zpk = f kz in Ω,

divk uk = 0 in Ω,
uk = gk on Γ,

(4.5)

where ∆a denotes the axisymmetric part of ∆:

∆av :=
1
r
∂r(r∂rv) + ∂2z v,

and
divk uk :=

1
r
∂r(rukr ) +

ik
r
ukθ + ∂zu

k
z . (4.6)

Remark 4.1. We will, for all k ∈ ℤ, show existence and uniqueness of solutions to (4.5) in Section 6.2.

Remark 4.2. By taking the complex conjugate of (4.5), it is easy to see that, for real-valued data f and g, in
which case (letting ̄f k, with some ambiguity of notation, denote the complex conjugate of f k)

f−k = ̄f k , g−k = ̄gk ,

the pair (ūk , p̄k) solves (4.5) with k replaced by −k. This means that the Fourier coefficients of the solution
will also satisfy

u−k = ūk , p−k = p̄k

(corresponding, of course, to a unique, real-valued solution of the three-dimensional Stokes problem for real-
valued data), so in the practical case with real-valued data, we only need to solve the problems (4.5) for k ≥ 0
and, in addition, the solution for k = 0 will be real-valued.
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Remark 4.3. The compatibility condition (2.2) translates into a condition on the Fourier coefficient g0:

∫
Γ

(g0r nr + g0z nz)r ds = 0, (4.7)

where n = (nr , nz)T denotes theunit outwardnormal vector toΩ on Γ, andds is (the lengthof) the line element
along Γ.

5 Variational Spaces
In Section 6.1, we will state variational formulations of the two-dimensional problems (4.5). To determine
natural variational spaces for the Fourier coefficients defined on the half sectionΩ, we start by expressing the
L2(Ω̆)- and (H1(Ω̆))3-inner products in cylindrical coordinates, as integrals over Ω̃, and use Fourier expan-
sions to derive decompositions of the inner products, and associated norms, into sums over all wavenumbers.

Based on the structure of the different terms, which are weighted integrals over Ω of the Fourier coeffi-
cients and their derivatives, we define weighted Sobolev spaces on Ω.

As a result, we obtain characterizations of the three-dimensional spaces L2(Ω̆) and (H1(Ω̆))3, in terms
of two-dimensional weighted spaces on Ω for all Fourier coefficients. In particular, we show that the
three-dimensional spaces are isometrically isomorphic to a subspace of the Cartesian product, over all wave-
numbers, of the two-dimensional weighted spaces. As a corollary, we obtain corresponding characterizations
of the subspaces L20(Ω̆) and (H1

0(Ω̆))3.
Using the results for (H1

0(Ω̆))3, we finally derive a characterization (also in terms of spaces for all Fourier
coefficients) of its dual (H−1(Ω̆))3.

5.1 Fourier Decomposition of Inner Products and Norms

In cylindrical coordinates, the L2(Ω̆)-inner product of two scalar functions

̆p(x, y, z) = p(r, θ, z), ̆q(x, y, z) = q(r, θ, z) (5.1)

is expressed as an integral over Ω̃, defined by (3.1), with weight r:

( ̆p, ̆q)L2(Ω̆) = ∫
Ω̆

̆p ̄̆q dx dy dz = ∫
Ω̃

p ̄qr dr dθ dz. (5.2)

For two vector functions
̆u(x, y, z) = Rθu(r, θ, z), ̆v(x, y, z) = Rθv(r, θ, z), (5.3)

the (H1(Ω̆))3-inner product

( ̆u, ̆v)(H1(Ω̆))3 = ∫

Ω̆

( ̆u ⋅ ̄̆v + grad ̆u : grad ̄̆v)dx dy dz

= ∫

Ω̆

( ̆ux ̄̆vx + ̆uy ̄̆vy + ̆uz ̄̆vz
+ ∂x ̆ux∂x ̄̆vx + ∂y ̆ux∂y ̄̆vx + ∂z ̆ux∂z ̄̆vx
+ ∂x ̆uy∂x ̄̆vy + ∂y ̆uy∂y ̄̆vy + ∂z ̆uy∂z ̄̆vy
+ ∂x ̆uz∂x ̄̆vz + ∂y ̆uz∂y ̄̆vz + ∂z ̆uz∂z ̄̆vz)dx dy dz
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can, through repeated use of relations (3.2), (3.3) and the Pythagorean trigonometric identity, be expressed
in cylindrical coordinates:

( ̆u, ̆v)(H1(Ω̆))3 = ∫

Ω̃

(ur ̄vr + uθ ̄vθ + uz ̄vz

+ ∂rur∂r ̄vr +
1
r2
∂θur∂θ ̄vr + ∂zur∂z ̄vr +

1
r2
ur ̄vr

+ ∂ruθ∂r ̄vθ +
1
r2
∂θuθ∂θ ̄vθ + ∂zuθ∂z ̄vθ +

1
r2
uθ ̄vθ

+
1
r2
((∂θuθ) ̄vr + ur(∂θ ̄vθ) − (∂θur) ̄vθ − uθ(∂θ ̄vr))

+ ∂ruz∂r ̄vz +
1
r2
∂θuz∂θ ̄vz + ∂zuz∂z ̄vz)r dr dθ dz. (5.4)

We now consider Fourier expansions

p = 1
√2π
∑
k∈ℤ

pk(r, z)eikθ , q = 1
√2π
∑
k∈ℤ

qk(r, z)eikθ , (5.5)

u = 1
√2π
∑
k∈ℤ

uk(r, z)eikθ , v = 1
√2π
∑
k∈ℤ

vk(r, z)eikθ , (5.6)

where v = (vr , vθ , vz)T and vk = (vkr , vkθ , v
k
z )T . Using the orthogonality on [−π, π] of the family {eikθ}+∞k=−∞ of

basis functions, we obtain (letting ̄qk, as before, denote the complex conjugate of qk)

π

∫
−π

p ̄q dθ = 1
2π

π

∫
−π

(∑
k∈ℤ

pk(r, z)eikθ)( ∑
k∈ℤ
̄qk (r, z)e−ikθ)dθ

=
1
2π ∑k,k∈ℤ

pk(r, z) ̄qk (r, z)
π

∫
−π

ei(k−k)θ dθ = ∑
k∈ℤ

pk(r, z) ̄qk(r, z) (5.7)

and, similarly, in four other representative cases,

π

∫
−π

∂rur∂r ̄vr dθ = ∑
k∈ℤ

∂rukr (r, z)∂r ̄vkr (r, z),
π

∫
−π

∂θur∂θ ̄vr dθ = ∑
k∈ℤ

k2ukr (r, z) ̄vkr (r, z),

π

∫
−π

(∂θuθ) ̄vr dθ = ∑
k∈ℤ

ikukθ(r, z) ̄v
k
r (r, z),

π

∫
−π

uθ(∂θ ̄vr)dθ = ∑
k∈ℤ

ukθ(r, z)(−ik) ̄v
k
r (r, z).

(5.8)

Inserting (5.7) and (5.8) (and analogous results for the remaining θ-integrals) into (5.2), (5.4) gives

( ̆p, ̆q)L2(Ω̆) = ∑
k∈ℤ
∫
Ω

pk ̄qkr dr dz,

( ̆u, ̆v)(H1(Ω̆))3 = ∑
k∈ℤ
∫
Ω

(ukr ̄vkr + ukθ ̄v
k
θ + u

k
z ̄vkz

+ ∂rukr ∂r ̄vkr + ∂zukr ∂z ̄vkr +
1 + k2
r2

ukr ̄vkr +
2ik
r2

ukθ ̄v
k
r

+ ∂rukθ∂r ̄v
k
θ + ∂zu

k
θ∂z ̄v

k
θ +

1 + k2
r2

ukθ ̄v
k
θ −

2ik
r2

ukr ̄vkθ

+ ∂rukz∂r ̄vkz + ∂zukz∂z ̄vkz +
k2

r2
ukz ̄vkz)r dr dz, (5.9)

expressing the L2(Ω̆)-inner product and the (H1(Ω̆))3-inner product as sums, over all wavenumbers, of
weighted integrals over the half section Ω of the Fourier coefficients and their derivatives.
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The corresponding decompositions of the associated norms are

‖ ̆q‖2L2(Ω̆) = ∑
k∈ℤ
∫
Ω

|qk|2r dr dz, (5.10)

‖ ̆v‖2
(H1(Ω̆))3 = ∑

k∈ℤ
∫
Ω

(|vkr |2 + |vkθ|
2 + |vkz |2

+ |∂rvkr |2 + |∂zvkr |2 +
1 + k2
r2
|vkr |2 +

2ik
r2

vkθ ̄v
k
r

+ |∂rvkθ|
2 + |∂zvkθ|

2 +
1 + k2
r2
|vkθ|

2 −
2ik
r2

vkr ̄vkθ

+ |∂rvkz |2 + |∂zvkz |2 +
k2

r2
|vkz |2)r dr dz. (5.11)

5.2 Weighted Sobolev Spaces on Ω

Led by (5.10) and (5.11), where each term is an integral over Ω with weight r or r−1, we first introduce the
spaces

L21(Ω) := {v
 v : Ω → ℂmeasurable,∫

Ω

|v(r, z)|2r dr dz < +∞},

L2−1(Ω) := {v
 v : Ω → ℂmeasurable,∫

Ω

|v(r, z)|2r−1 dr dz < +∞},

equipped with the natural norms

‖v‖L21(Ω) := (∫
Ω

|v(r, z)|2r dr dz)
1
2 , ‖v‖L2−1(Ω) := (∫

Ω

|v(r, z)|2r−1 dr dz)
1
2 .

Next, we define H1
1(Ω) as the space of functions in L21(Ω) such that their partial derivatives (being taken

in the sense of distributions) of order 1 belong to L21(Ω), equipped with the semi-norm

|v|H1
1(Ω) := (‖∂rv‖

2
L21(Ω)
+ ‖∂zv‖2L21(Ω))

1
2

and norm
‖v‖H1

1(Ω) := (‖v‖
2
L21(Ω)
+ |v|2H1

1(Ω)
)
1
2 .

Remark 5.1. The definition can be extended in a natural way to Hm
1 (Ω) for an arbitrary integer m ≥ 2 and

further, by interpolation, to Hs
1(Ω) for non-integer s > 0.

We will also need the weighted space

V1
1(Ω) := H1

1(Ω) ∩ L2−1(Ω),

equipped with the norm
‖v‖V1

1 (Ω) := (‖v‖
2
L2−1(Ω)
+ |v|2H1

1(Ω)
)
1
2 .

It canbeproved [8, Proposition4.1] that all functions inV1
1(Ω)have anull trace on thepart Γ0 of the boundary

contained in the z-axis.
We finally introduce the subspaces

L21,0(Ω) := {q
 q ∈ L

2
1(Ω),∫

Ω

q(r, z)r dr dz = 0}, (5.12)

consisting of functions in L21(Ω) with weighted integral equal to zero, and

H1
1⬦(Ω) := {v | v ∈ H1

1(Ω), v = 0 on Γ}, V1
1⬦(Ω) := {v | v ∈ V1

1(Ω), v = 0 on Γ},

consisting of functions in H1
1(Ω) and V1

1(Ω) that vanish on the part Γ = ∂Ω\Γ0 of the boundary that is not
contained in the z-axis.

All spaces defined above are Hilbert spaces for the inner products associated with the given norms.
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5.3 Characterization of L2(Ω̆) and L20(Ω̆)
Recalling identity (5.10), we let the right-hand side terms, for all k ∈ ℤ, define spaces L2(k)(Ω) := L

2
1(Ω) for the

Fourier coefficients qk of a function ̆q ∈ L2(Ω̆), with norms

‖qk‖2L2(k)(Ω) = ‖q
k‖2L21(Ω) = ∫

Ω

|qk|2r dr dz. (5.13)

Introducing the l2-sum (see [7, p. 63])⨁2{L2(k)(Ω) | k ∈ ℤ}, which is the subspace of the Cartesian product
× {L2(k)(Ω) | k ∈ ℤ} consisting of all sequences (q

k)k∈ℤ for which the norm

‖(qk)‖⨁2{L2(k)(Ω)|k∈ℤ}
:= (∑

k∈ℤ
‖qk‖2L2(k)(Ω))

1
2 < +∞, (5.14)

and combining (5.10) with (5.13)–(5.14), we obtain the following characterization of L2(Ω̆).

Theorem 5.2. The mapping ̆q → (qk)k∈ℤ, defined by (5.1) and (5.5), is an isometric isomorphism between
L2(Ω̆) and the l2-sum⨁2{L2(k)(Ω) | k ∈ ℤ}:

‖ ̆q‖L2(Ω̆) = (∑
k∈ℤ
‖qk‖2L2(k)(Ω))

1
2 = ‖(qk)‖⨁2{L2(k)(Ω)|k∈ℤ}, (5.15)

where, for all k ∈ ℤ, L2(k)(Ω) = L
2
1(Ω).

Since, for ̆q ∈ L2(Ω̆), by (5.1) and (5.5),

∫

Ω̆

̆q(x, y, z)dx dy dz = ∫
Ω̃

q(r, θ, z)r dr dθ dz = 1
√2π
∑
k∈ℤ
∫

Ω̃

qk(r, z)eikθr dr dθ dz = √2π∫
Ω

q0(r, z)r dr dz,

we also, recalling (5.12), obtain a characterization of the subspace L20(Ω̆) of L2(Ω̆).

Corollary 5.3. The mapping ̆q → (qk)k∈ℤ, defined by (5.1) and (5.5), is an isometric isomorphism between
L20(Ω̆) and the l2-sum⨁2{L2(k),0(Ω) | k ∈ ℤ}, where

L2(k),0(Ω) :=
{
{
{

L21,0(Ω) if k = 0,
L21(Ω) if k ̸= 0,

and, for all k ∈ ℤ, ‖qk‖L2(k),0(Ω) = ‖q
k‖L21(Ω).

5.4 Characterization of (H1(Ω̆))3 and (H1
0(Ω̆))3

Similarly, led by the right-hand side terms in identity (5.11), for all k ∈ ℤ, we define spaces H1
(k)(Ω) for the

Fourier coefficient triples vk = (vkr , vkθ , v
k
z )T of a vector function ̆v ∈ (H1(Ω̆))3, by the norms

‖vk‖2H1
(k)(Ω)

:= ∫
Ω

(|vkr |2 + |vkθ|
2 + |vkz |2

+ |∂rvkr |2 + |∂zvkr |2 +
1 + k2
r2
|vkr |2 +

2ik
r2

vkθ ̄v
k
r

+ |∂rvkθ|
2 + |∂zvkθ|

2 +
1 + k2
r2
|vkθ|

2 −
2ik
r2

vkr ̄vkθ

+ |∂rvkz |2 + |∂zvkz |2 +
k2

r2
|vkz |2)r dr dz. (5.16)

To see that (5.16) satisfies the properties of a norm, we consider the function ̆vk ∈ (H1(Ω̆))3 corresponding to
a single Fourier coefficient vk ∈ H1

(k)(Ω):

̆vk(x, y, z) := 1
√2π

Rθvk(r, z)eikθ ,
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and, from (5.11), note that
‖vk‖H1

(k)(Ω) = ‖ ̆v
k‖(H1(Ω̆))3 . (5.17)

From (5.17) and the norm properties of (H1(Ω̆))3, we immediately get

‖vk‖H1
(k)(Ω) ≥ 0,

‖vk‖H1
(k)(Ω) = 0 ⇐⇒ ‖ ̆v

k‖(H1(Ω̆))3 = 0 ⇐⇒ ̆v
k = 0 ⇐⇒ vk = 0,

‖cvk‖H1
(k)(Ω) = ‖c ̆v

k‖(H1(Ω̆))3 = |c|‖ ̆v
k‖(H1(Ω̆))3 = |c|‖v

k‖H1
(k)(Ω),

‖vk + wk‖H1
(k)(Ω) = ‖ ̆v

k + w̆k‖(H1(Ω̆))3 ≤ ‖ ̆v
k‖(H1(Ω̆))3 + ‖w̆

k‖(H1(Ω̆))3 = ‖v
k‖H1

(k)(Ω) + ‖w
k‖H1

(k)(Ω).

Also from (5.17), the completeness of H1
(k)(Ω) is a consequence of the completeness of (H1(Ω̆))3.

Wenowcharacterize the spacesH1
(k)(Ω) in terms of theweighted spaces defined in Section 5.2. Beginning

with the case k = 0, from (5.16),

‖v0‖2H1
(0)(Ω)
= ‖v0‖2(L21(Ω))3 + ‖v

0
r ‖

2
V1
1 (Ω)
+ ‖v0θ‖

2
V1
1 (Ω)
+ |v0z |2H1

1(Ω)
, (5.18)

and we deduce that
H1
(0)(Ω) = V

1
1(Ω) × V1

1(Ω) × H1
1(Ω). (5.19)

For the cases k = ±1, (5.16) gives

‖v±1‖2H1
(±1)(Ω)
= ‖v±1‖2(L21(Ω))3 + |v

±1
r |

2
H1
1(Ω)
+ |v±1θ |

2
H1
1(Ω)
+ ‖v±1z ‖2V1

1 (Ω)

+ 2∫
Ω

(|v±1r |2 + |v±1θ |
2 ± i(v±1θ ̄v

±1
r − v±1r ̄v±1θ ))

1
r
dr dz,

and by noting that

|v±1r ± iv±1θ |
2 = (v±1r ± iv±1θ )( ̄v

±1
r ∓ i ̄v±1θ ) = |v

±1
r |

2 + |v±1θ |
2 ± i(v±1θ ̄v

±1
r − v±1r ̄v±1θ ),

we obtain

‖v±1‖2H1
(±1)(Ω)
= ‖v±1‖2(L21(Ω))3 + 2‖v

±1
r ± iv±1θ ‖

2
L2−1(Ω)
+ |v±1r |2H1

1(Ω)
+ |v±1θ |

2
H1
1(Ω)
+ ‖v±1z ‖2V1

1 (Ω)
, (5.20)

from which we deduce that, for k = ±1,

H1
(k)(Ω) = {v

k | vk ∈ H1
1(Ω) × H1

1(Ω) × V1
1(Ω), vkr + ikvkθ ∈ L

2
−1(Ω)}. (5.21)

When |k| ≥ 2, (5.16) gives

‖vk‖2H1
(k)(Ω)
= ‖vk‖2(L21(Ω))3 + |v

k|2(H1
1(Ω))3
+ (1 + k2)(‖vkr ‖2L2−1(Ω) + ‖v

k
θ‖

2
L2−1(Ω)
)

+ k2‖vkz‖2L2−1(Ω) + 2ik∫
Ω

(vkθ ̄v
k
r − vkr ̄vkθ)

1
r
dr dz. (5.22)

Noting that i(vkθ ̄v
k
r − vkr ̄vkθ) = 2 Im(v

k
r ̄vkθ), confirming that the right-hand sides are real for all k ∈ ℤ, we can

estimate the last term

2ik∫

Ω

(vkθ ̄v
k
r − vkr ̄vkθ)

1
r
dr dz

≤ 4|k|∫

Ω

|vkr ||vkθ|
1
r
dr dz ≤ 2|k|(‖vkr ‖2L2−1(Ω) + ‖v

k
θ‖

2
L2−1(Ω)
),

resulting in the inequalities

‖vk‖2(L21(Ω))3 + |v
k|2(H1

1(Ω))3
+ (|k| − 1)2(‖vkr ‖2L2−1(Ω) + ‖v

k
θ‖

2
L2−1(Ω)
) + k2‖vkz‖2L2−1(Ω)

≤ ‖vk‖2H1
(k)(Ω)
≤ ‖vk‖2(L21(Ω))3 + |v

k|2(H1
1(Ω))3
+ (|k| + 1)2(‖vkr ‖2L2−1(Ω) + ‖v

k
θ‖

2
L2−1(Ω)
) + k2‖vkz‖2L2−1(Ω). (5.23)

Since |k| ≥ 2,
(|k| − 1)2 = (1 − 1

|k|)
2
k2 ≥ 14 k

2, (|k| + 1)2 = (1 + 1
|k|)

2
k2 ≤ 94 k

2,
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which, combined with (5.23), shows that the norm ‖ ⋅ ‖H1
(k)(Ω) is equivalent to the norm ‖ ⋅ ‖H1

(k)∗(Ω):

1
2 ‖v

k‖H1
(k)∗(Ω) ≤ ‖v

k‖H1
(k)(Ω) ≤

3
2 ‖v

k‖H1
(k)∗(Ω),

where ‖ ⋅ ‖H1
(k)∗(Ω) is defined by

‖vk‖2H1
(k)∗(Ω)

:= ‖vk‖2(L21(Ω))3 + |v
k|2(H1

1(Ω))3
+ k2‖vk‖2(L2−1(Ω))3 . (5.24)

We deduce that, for |k| ≥ 2,
H1
(k)(Ω) = V

1
1(Ω) × V1

1(Ω) × V1
1(Ω). (5.25)

We summarize our results in the following characterization of (H1(Ω̆))3.

Theorem 5.4. The mapping ̆v → (vk)k∈ℤ, defined by (5.3) and (5.6), is an isometric isomorphism between
(H1(Ω̆))3 and the l2-sum⨁2{H1

(k)(Ω) | k ∈ ℤ}:

‖ ̆v‖(H1(Ω̆))3 = (∑
k∈ℤ
‖vk‖2H1

(k)(Ω)
)

1
2 = ‖(vk)‖⨁2{H1

(k)(Ω)|k∈ℤ}, (5.26)

where, from (5.19), (5.21), (5.25),

H1
(k)(Ω) :=

{{{
{{{
{

V1
1(Ω) × V1

1(Ω) × H1
1(Ω) if k = 0,

{vk ∈ H1
1(Ω) × H1

1(Ω) × V1
1(Ω), vkr + ikv

k
θ ∈ L

2
−1(Ω)} if |k| = 1,

V1
1(Ω) × V1

1(Ω) × V1
1(Ω) if |k| ≥ 2,

and where the norms ‖ ⋅ ‖H1
(k)(Ω) are given by (5.18), (5.20), (5.22):

‖vk‖2H1
(k)(Ω)

:=

{{{{{{
{{{{{{
{

‖vk‖2(L21(Ω))3 + ‖v
k
r ‖2V1

1 (Ω)
+ ‖vkθ‖

2
V1
1 (Ω)
+ |vkz |2H1

1(Ω)
if k = 0,

‖vk‖2(L21(Ω))3 + 2‖v
k
r + ikvkθ‖

2
L2−1(Ω)
+ |vkr |2H1

1(Ω)
+ |vkθ|

2
H1
1(Ω)
+ ‖vkz‖2V1

1 (Ω)
if |k| = 1,

‖vk‖2(L21(Ω))3 + |v
k|2(H1

1(Ω))3
+ (1 + k2)(‖vkr ‖2L2−1(Ω) + ‖v

k
θ‖

2
L2−1(Ω)
)

+k2‖vkz‖2L2−1(Ω) + 2ik ∫Ω(v
k
θ ̄v

k
r − vkr ̄vkθ)

1
r dr dz if |k| ≥ 2.

For |k| ≥ 2, we can use the equivalent norm ‖ ⋅ ‖H1
(k)∗(Ω) defined by (5.24):

‖vk‖2H1
(k)∗(Ω)

:= ‖vk‖2(L21(Ω))3 + |v
k|2(H1

1(Ω))3
+ k2‖vk‖2(L2−1(Ω))3 .

Remark 5.5. Corresponding to (5.26), we restate (5.9) in terms of the inner products ( ⋅ , ⋅ )H1
(k)(Ω) associated

with the norms ‖ ⋅ ‖H1
(k)(Ω):

( ̆v, w̆)(H1(Ω̆))3 = ∑
k∈ℤ
(vk , wk)H1

(k)(Ω).

Remark 5.6. For comparison, in Appendix A, we derive (5.18), (5.20), (5.22) by an alternative method used
in [5].

We now consider the subspace (H1
0(Ω̆))3 of (H1(Ω̆))3. The corresponding subspaces of H1

(k)(Ω) are

H1
(k)⬦(Ω) := H

1
(k)(Ω) ∩ (H

1
1⬦(Ω))3,

consisting of vector functions in H1
(k)(Ω) that vanish on the part Γ = ∂Ω\Γ0 of the boundary that is not con-

tained in the z-axis. Since we use the semi-norm | ⋅ |(H1(Ω̆))3 as a norm, equivalent to ‖ ⋅ ‖(H1(Ω̆))3 , on (H
1
0(Ω̆))3,

we state the following representation of | ⋅ |(H1(Ω̆))3 , which follows immediately from (5.11) by omitting the
terms corresponding to the (L2(Ω̆))3-norm:

| ̆v|2
(H1(Ω̆))3 = ∑

k∈ℤ
|vk|2H1

(k)(Ω)
, (5.27)
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where we define

|vk|2H1
(k)(Ω)

:= ∫
Ω

(|∂rvkr |2 + |∂zvkr |2 +
1 + k2
r2
|vkr |2 +

2ik
r2

vkθ ̄v
k
r

+ |∂rvkθ|
2 + |∂zvkθ|

2 +
1 + k2
r2
|vkθ|

2 −
2ik
r2

vkr ̄vkθ

+ |∂rvkz |2 + |∂zvkz |2 +
k2

r2
|vkz |2)r dr dz.

Remark 5.7. The relation corresponding to (5.27) between the associated inner products ( ⋅ , ⋅ )(H1
0(Ω̆))3

and
( ⋅ , ⋅ )H1

(k)⬦(Ω) is
( ̆v, w̆)(H1

0(Ω̆))3
= ∑

k∈ℤ
(vk , wk)H1

(k)⬦(Ω). (5.28)

For all k ∈ ℤ, | ⋅ |H1
(k)(Ω) is a norm, equivalent to ‖ ⋅ ‖H1

(k)(Ω), on H1
(k)⬦(Ω). This follows by again considering

a function ̆vk ∈ (H1
0(Ω̆))3 corresponding to a single Fourier coefficient vk ∈ H1

(k)⬦(Ω):

̆vk(x, y, z) := 1
√2π

Rθvk(r, z)eikθ ,

and noting that, by (5.27), the equivalence between | ⋅ |(H1(Ω̆))3 and ‖ ⋅ ‖(H1(Ω̆))3 on (H
1
0(Ω̆))3, and (5.26),

|vk|H1
(k)(Ω) = | ̆v

k|(H1(Ω̆))3 ≥ c‖ ̆v
k‖(H1(Ω̆))3 = c‖v

k‖H1
(k)(Ω).

We get the following characterization of (H1
0(Ω̆))3.

Corollary 5.8. The mapping ̆v → (vk)k∈ℤ, defined by (5.3) and (5.6), is an isometric isomorphism between
(H1

0(Ω̆))3 and the l2-sum⨁2{H1
(k)⬦(Ω) | k ∈ ℤ}:

| ̆v|(H1(Ω̆))3 = (∑
k∈ℤ
|vk|2H1

(k)(Ω)
)

1
2 = ‖(vk)‖⨁2{H1

(k)⬦(Ω)|k∈ℤ}, (5.29)

where

H1
(k)⬦(Ω) :=

{{{
{{{
{

V1
1⬦(Ω) × V1

1⬦(Ω) × H1
1⬦(Ω) if k = 0,

{vk ∈ H1
1⬦(Ω) × H1

1⬦(Ω) × V1
1⬦(Ω), vkr + ikv

k
θ ∈ L

2
−1(Ω)} if |k| = 1,

V1
1⬦(Ω) × V1

1⬦(Ω) × V1
1⬦(Ω) if |k| ≥ 2,

and

|vk|2H1
(k)(Ω)

:=

{{{{{{
{{{{{{
{

‖vkr ‖2V1
1 (Ω)
+ ‖vkθ‖

2
V1
1 (Ω)
+ |vkz |2H1

1(Ω)
if k = 0,

|vkr |2H1
1(Ω)
+ |vkθ|

2
H1
1(Ω)
+ ‖vkz‖2V1

1 (Ω)
+ 2‖vkr + ikvkθ‖

2
L2−1(Ω)

if |k| = 1,
|vk|2(H1

1(Ω))3
+ (1 + k2)(‖vkr ‖2L2−1(Ω) + ‖v

k
θ‖

2
L2−1(Ω)
)

+k2‖vkz‖2L2−1(Ω) + 2ik ∫Ω(v
k
θ ̄v

k
r − vkr ̄vkθ)

1
r dr dz if |k| ≥ 2.

For |k| ≥ 2, we can use the equivalent norm | ⋅ |H1
(k)∗(Ω) defined by

|vk|2H1
(k)∗(Ω)

:= |vk|2(H1
1(Ω))3
+ k2‖vk‖2(L2−1(Ω))3 .

5.5 Characterization of (H−1(Ω̆))3
For ̆f ∈ (H−1(Ω̆))3, from the Riesz representation theorem, we deduce the existence of (a unique)

w̆f ∈ (H1
0(Ω̆))3, with ‖ ̆f ‖(H−1(Ω̆))3 = |w̆f |(H1(Ω̆))3 ,

such that, for all ̆v ∈ (H1
0(Ω̆))3,

⟨ ̆f , ̆v⟩(H−1(Ω̆))3×(H1
0(Ω̆))3
= (w̆f , ̆v)(H1

0(Ω̆))3
= ∑

k∈ℤ
(wk

f , v
k)H1

(k)⬦(Ω)
:= ∑

k∈ℤ
⟨f k , vk⟩H−1

(k)(Ω)×H
1
(k)⬦(Ω), (5.30)

where we have used (5.28), and H−1(k)(Ω) denotes the dual space of H
1
(k)⬦(Ω).
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Remark 5.9. For ̆f ∈ (L2(Ω̆))3, we have

f k(r, z) = 1
√2π

π

∫
−π

(R−θ ̆f )(r, θ, z)e−ikθ dθ,

and we can write the duality pairings as integrals

⟨ ̆f , ̆v⟩(H−1(Ω̆))3×(H1
0(Ω̆))3
= ∫

Ω̆

( ̆f ⋅ ̄̆v)dx dy dz,

⟨f k , vk⟩H−1
(k)(Ω)×H

1
(k)⬦(Ω) = ∫

Ω

(f k ⋅ ̄vk)r dr dz. (5.31)

From (5.29) and the definition (5.30) of f k, we get

‖ ̆f ‖2
(H−1(Ω̆))3 = |w̆f |2(H1(Ω̆))3 = ∑

k∈ℤ
|wk

f |
2
H1

(k)(Ω)
= ∑

k∈ℤ
‖f k‖2H−1

(k)(Ω)
,

which gives the following characterization of (H−1(Ω̆))3.

Theorem 5.10. The mapping ̆f → (f k)k∈ℤ, defined by (5.30), is an isometric isomorphism between (H−1(Ω̆))3
and the l2-sum⨁2{H−1(k)(Ω) | k ∈ ℤ}:

‖ ̆f ‖(H−1(Ω̆))3 = (∑
k∈ℤ
‖f k‖2H−1

(k)(Ω)
)

1
2 = ‖(f k)‖⨁2{H−1

(k)(Ω)|k∈ℤ}
.

6 Two-Dimensional Problems
In this section,we state variational formulations of the two-dimensional problems for the Fourier coefficients,
which are set in the spaces from the previous section. We show existence, uniqueness and stability from
inf-sup conditions. We conclude by discussing some features of the special case with axisymmetric data.

6.1 Variational Formulation

Introducing, for all k ∈ ℤ, the sesquilinear forms

Ak(u, v) := (u, v)H1
(k)⬦(Ω)

= ∫
Ω

(∂rur∂r ̄vr + ∂zur∂z ̄vr +
1 + k2
r2

ur ̄vr +
2ik
r2

uθ ̄vr

+ ∂ruθ∂r ̄vθ + ∂zuθ∂z ̄vθ +
1 + k2
r2

uθ ̄vθ −
2ik
r2

ur ̄vθ

+ ∂ruz∂r ̄vz + ∂zuz∂z ̄vz +
k2

r2
uz ̄vz)r dr dz,

Bk(v, q) := −∫
Ω

(divk v) ̄qr dr dz = −∫
Ω

(∂r(rvr) + ikvθ + ∂z(rvz)) ̄q dr dz,

where divk is defined by (4.6), we consider the following variational formulation of (4.5):
Find

(uk , pk) ∈ H1
(k)(Ω) × L

2
(k),0(Ω), where uk − gk ∈ H1

(k)⬦(Ω),

such that, for all (v, q) ∈ H1
(k)⬦(Ω) × L

2
(k),0(Ω),

{
{
{

Ak(uk , v) +Bk(v, pk) = ⟨f k , v⟩H−1
(k)(Ω)×H

1
(k)⬦(Ω),

Bk(uk , q) = 0.
(6.1)
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Remark 6.1. Note that the termBk is conjugated in the first equation in (6.1), making the sesquilinear form

Mk((u, p), (v, q)) := Ak(u, v) +Bk(v, p) +Bk(u, q)

Hermitian.

Remark 6.2. We use the same notation gk for the Fourier coefficients of the Dirichlet boundary data ̆g, and
their liftings in H1

(k)(Ω). Existence of these liftings follows from the three-dimensional trace theorem since
̆g ∈ (H 1

2 (∂Ω̆))3 and thus, again using the same notation, admits a lifting ̆g ∈ (H1(Ω̆))3.

Remark 6.3. For ̆f ∈ (L2(Ω̆))3, we can, as noted in (5.31), write the duality pairings as integrals

⟨f k , v⟩H−1
(k)(Ω)×H

1
(k)⬦(Ω) = ∫

Ω

(f k ⋅ ̄v)r dr dz.

Remark 6.4. The sesquilinear formsAk( ⋅ , ⋅ ) andBk( ⋅ , ⋅ ) are related to the corresponding sesquilinear forms

̆a( ̆u, ̆v) = ( ̆u, ̆v)(H1
0(Ω̆))3
= ∫

Ω̆

grad ̆u : grad ̄̆v dx dy dz, b̆( ̆v, ̆q) = −∫
Ω̆

(div ̆v) ̄̆q dx dy dz,

in the following mixed formulation of the three-dimensional problem (2.1):
Find ( ̆u, ̆p) ∈ (H1(Ω̆))3 × L20(Ω̆), where ̆u − ̆g ∈ (H1

0(Ω̆))3, such that, for all ( ̆v, ̆q) ∈ (H1
0(Ω̆))3 × L20(Ω̆),

{
{
{

̆a( ̆u, ̆v) + b̆( ̆v, ̆p) = ⟨ ̆f , ̆v⟩(H−1(Ω̆))3×(H1
0(Ω̆))3

,

b̆( ̆u, ̆q) = 0,

by the relations

̆a( ̆u, ̆v) = ∑
k∈ℤ

Ak(uk , vk), (6.2)

b̆( ̆v, ̆q) = ∑
k∈ℤ

Bk(vk , qk), (6.3)

where (6.2) is a restatement of (5.28), and (6.3) is an analogous consequence of (3.6) and the orthogonality
on [−π, π] of the family {eikθ}+∞k=−∞ of basis functions (cf. (5.7)).

6.2 Well-Posedness

Setting uk = uk0 + gk, we rewrite (6.1) as follows:
Find (uk0, pk) ∈ H

1
(k)⬦(Ω) × L

2
(k),0(Ω) such that, for all (v, q) ∈ H

1
(k)⬦(Ω) × L

2
(k),0(Ω),

{
{
{

Ak(uk0, v) +Bk(v, pk) = ⟨f k , v⟩H−1
(k)(Ω)×H

1
(k)⬦(Ω) −Ak(gk , v),

Bk(uk0, q) = −Bk(gk , q).

SinceAk( ⋅ , ⋅ ) is a nonnegative, Hermitian form, whereAk(v, v) = |v|2H1
(k)(Ω)

, we have

|Ak(u, v)| ≤ Ak(u, u)
1
2Ak(v, v)

1
2 = |u|H1

(k)(Ω)|v|H1
(k)(Ω),

showing coercivity ofAk( ⋅ , ⋅ ) on H1
(k)⬦(Ω), continuity ofAk( ⋅ , ⋅ ) on H1

(k)⬦(Ω) × H
1
(k)⬦(Ω), and

Ak(gk , ⋅ ) ∈ H−1(k)(Ω) with ‖Ak(gk , ⋅ )‖H−1
(k)(Ω)
≤ |gk|H1

(k)(Ω).

Again considering functions corresponding to a single Fourier coefficient

̆vk(x, y, z) = 1
√2π

Rθvk(r, z)eikθ ,

̆qk(x, y, z) = 1
√2π

qk(r, z)eikθ , (6.4)
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we note from (6.3), the continuity of the three-dimensional form b̆( ⋅ , ⋅ ), (5.27) and (5.15) that

|Bk(vk , qk)| = |b̆( ̆vk , ̆qk)| ≤ √3| ̆vk|(H1(Ω̆))3‖ ̆q
k‖L2(Ω̆) = √3|v

k|H1
(k)(Ω)‖q

k‖L21(Ω),

which shows continuity ofBk( ⋅ , ⋅ ) on H1
(k)⬦(Ω) × L

2
(k),0(Ω), and

Bk(gk , ⋅ ) ∈ L2(k),0(Ω)
∗ with ‖Bk(gk , ⋅ )‖L2(k),0(Ω)∗ ≤ √3|g

k|H1
(k)(Ω).

The inf-sup condition forBk( ⋅ , ⋅ ) onH1
(k)⬦(Ω) × L

2
(k),0(Ω) that there exists a positive constant β (indepen-

dent of k) such that,

for all qk ∈ L2(k),0(Ω), sup
vk∈H1

(k)⬦(Ω)

|Bk(vk , qk)|
|vk|H1

(k)(Ω)
≥ β‖qk‖L21(Ω)

follows from the three-dimensional inf-sup condition, from which, for an arbitrary qk ∈ L2(k),0(Ω) and corre-
sponding ̆qk ∈ L20(Ω̆) given by (6.4), we deduce that there exists w̆ ∈ (H1

0(Ω̆))3 such that, for its k-th Fourier
coefficient wk ∈ H1

(k)⬦(Ω),

|Bk(wk , qk)|
|wk|H1

(k)(Ω)
≥
|Bk(wk , qk)|
|w̆|(H1(Ω̆))3

=
|b̆(w̆, ̆qk)|
|w̆|(H1(Ω̆))3

≥ β‖ ̆qk‖L2(Ω̆) = β‖q
k‖L21(Ω).

We have thus proved (see, e.g., [4, Theorem 4.2.3]) the following theorem.

Theorem 6.5. For ̆f ∈ (H−1(Ω̆))3 and ̆g ∈ (H 1
2 (∂Ω̆))3, where g0 satisfies the compatibility condition (4.7), the

variational formulations (6.1) have unique solutions for all k ∈ ℤ. The solutions are bounded, uniformly in k, by

‖uk‖H1
(k)(Ω) + ‖p

k‖L21(Ω) ≤ C(‖f
k‖H−1

(k)(Ω)
+ ‖gk‖H1

(k)(Ω)). (6.5)

6.3 Axisymmetric Data

For axisymmetric data, i.e., only f 0 and g0 are non-zero, it follows immediately from uniqueness that only u0
and p0 are non-zero, which means that the solution will also be axisymmetric. Also note that problem (6.1)
for k = 0 decouples into two independent problems: one for (u0r , u0z , p0) and one for u0θ . If the data are real-
valued, these problems have real-valued solutions.

7 Anisotropic Spaces
We introduce two families H±1,s(Ω̆) of anisotropic spaces, where s is a nonnegative real number measuring
“extra regularity” in the angular direction, that we (following [3]) will use to derive an estimate of the error
due to Fourier truncation in Section 8.

When s is a nonnegative integer, we define

H±1,s(Ω̆) := { ̆v | Rθ∂lθR−θ ̆v ∈ (H
±1(Ω̆))3, 0 ≤ l ≤ s},

equipped with the norms
‖ ̆v‖H±1,s(Ω̆) := (∑

k∈ℤ
(1 + k2)s‖vk‖2H±1

(k)(Ω)
)

1
2 . (7.1)

Note that H±1,0(Ω̆) = (H±1(Ω̆))3. The norms defined by (7.1) are equivalent to the natural norms

(
s
∑
l=0
‖Rθ∂lθR−θ ̆v‖

2
(H±1(Ω̆))3)

1
2
, (7.2)

as we show in the following lemma.
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Lemma 7.1. For any nonnegative integer s, the norms defined by (7.1) are equivalent to the natural norms
defined by (7.2).

Proof. Let ̆v ∈ H±1,s(Ω̆) and 0 ≤ l ≤ s. From the Fourier expansions

Rθ∂lθR−θ ̆v(x, y, z) =
1
√2π
∑
k∈ℤ

Rθ(ik)lvk(r, z)eikθ

and Theorem 5.4/5.10 (for H1,s(Ω̆) and H−1,s(Ω̆), respectively), we get

s
∑
l=0
‖Rθ∂lθR−θ ̆v‖

2
(H±1(Ω̆))3 =

s
∑
l=0
∑
k∈ℤ
‖(ik)lvk‖2H±1

(k)(Ω)
= ∑

k∈ℤ
(

s
∑
l=0

k2l)‖vk‖2H±1
(k)(Ω)

,

from which the result follows.

We generalize by extending the norms defined by (7.1) to an arbitrary nonnegative real number s:

H±1,s(Ω̆) := { ̆v
 ‖
̆v‖H±1,s(Ω̆) := (∑

k∈ℤ
(1 + k2)s‖vk‖2H±1

(k)(Ω)
)

1
2 < +∞}. (7.3)

8 Error Due to Fourier Truncation
Introducing the truncated Fourier series

̆u[N] =
1
√2π
∑
|k|≤N

Rθuk(r, z)eikθ , ̆p[N] =
1
√2π
∑
|k|≤N

pk(r, z)eikθ ,

we prove the following estimate of the error due to Fourier truncation.

Theorem 8.1. Let s be a nonnegative real number. If the data ( ̆f , ̆g) of (2.1) belong to H−1,s(Ω̆) × H1,s(Ω̆), the
following error estimate holds between the solution ( ̆u, ̆p) and its truncated Fourier series ( ̆u[N], ̆p[N]):

‖ ̆u − ̆u[N]‖(H1(Ω̆))3 + ‖ ̆p − ̆p[N]‖L2(Ω̆) ≤ CN
−s(‖ ̆f ‖H−1,s(Ω̆) + ‖ ̆g‖H1,s(Ω̆)).

Proof. Using the isometries (5.15) and (5.26), together with the regularity estimate (6.5) and the definitions
of the anisotropic norms (7.3), we have

‖ ̆u − ̆u[N]‖2(H1(Ω̆))3 + ‖ ̆p − ̆p[N]‖
2
L2(Ω̆) =


1
√2π
∑
|k|>N

Rθukeikθ


2

(H1(Ω̆))3
+


1
√2π
∑
|k|>N

pkeikθ


2

L2(Ω̆)

= ∑
|k|>N
(‖uk‖2H1

(k)(Ω)
+ ‖pk‖2L21(Ω))

≤ 2C2 ∑
|k|>N
(‖f k‖2H−1

(k)(Ω)
+ ‖gk‖2H1

(k)(Ω)
)

≤ 2C2N−2s ∑
|k|>N
(1 + k2)s(‖f k‖2H−1

(k)(Ω)
+ ‖gk‖2H1

(k)(Ω)
)

≤ 2C2N−2s(‖ ̆f ‖2H−1,s(Ω̆) + ‖ ̆g‖
2
H1,s(Ω̆)).

Remark 8.2. As emphasized in [2], the error from Fourier truncation only depends on the regularity of the
data ( ̆f , ̆g), not on the regularity of the solution ( ̆u, ̆p) (which is geometry dependent). This means that, for
regular (with respect to θ) data, a small value for N suffices.
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A Comparison with Costabel, Dauge and Hu
In [5], characterization of Hm(Ω̆) by Fourier coefficients (for any positive integer m) is treated first; then the
relation (see [5, Proposition 6.1])

‖vk‖2H1
(k)(Ω)
=
1
2 ‖v

k
r + ivkθ‖

2
H1

(k+1)(Ω)
+
1
2 ‖v

k
r − ivkθ‖

2
H1

(k−1)(Ω)
+ ‖vkz‖2H1

(k)(Ω)
, (A.1)

linking vector H1
(k)(Ω)-norms and scalar H1

(k)(Ω)-norms, is used to derive characterizations of (Hm(Ω̆))3.
In the presentwork,wehavederived the characterization of (H1(Ω̆))3 in Theorem5.4bydirectly rewriting

the (H1(Ω̆))3-norm, where the decomposition (5.11) resulted in the H1
(k)(Ω)-norms given by (5.18) for k = 0,

by (5.20) for |k| = 1, and by (5.22) for |k| ≥ 2.
To compare the methods, we first note that

‖v‖2H1
(k)(Ω)

:=
{
{
{

‖v‖2L21(Ω) + |v|
2
H1
1(Ω)

if k = 0,
‖v‖2L21(Ω) + |v|

2
H1
1(Ω)
+ k2‖v‖2L2−1(Ω) if |k| ≥ 1,

(A.2)

which follows, as in Section 5.1, by expressing the H1(Ω̆)-inner product in cylindrical coordinates and using
Fourier expansions:

( ̆u, ̆v)H1(Ω̆) = ∫

Ω̆

( ̆u ̄̆v + ∂x ̆u∂x ̄̆v + ∂y ̆u∂y ̄̆v + ∂z ̆u∂z ̄̆v)dx dy dz

= ∫

Ω̃

(u ̄v + ∂ru∂r ̄v +
1
r2
∂θu∂θ ̄v + ∂zu∂z ̄v)r dr dθ dz

= ∑
k∈ℤ
∫
Ω

(uk ̄vk + ∂ruk∂r ̄vk + ∂zuk∂z ̄vk +
k2

r2
uk ̄vk)r dr dz =: ∑

k∈ℤ
(uk , vk)H1

(k)(Ω).

From (A.1), (A.2), and the polarization identity

‖a + b‖2 + ‖a − b‖2 = 2(‖a‖2 + ‖b‖2),

we then get, for k = 0,

‖v0‖2H1
(0)(Ω)
=
1
2 ‖v

0
r + iv0θ‖

2
H1

(1)(Ω)
+
1
2 ‖v

0
r − iv0θ‖

2
H1

(−1)(Ω)
+ ‖v0z ‖2H1

(0)(Ω)

=
1
2 (‖v

0
r + iv0θ‖

2
L21(Ω)
+ |v0r + iv0θ |

2
H1
1(Ω)
+ ‖v0r + iv0θ‖

2
L2−1(Ω)

+ ‖v0r − iv0θ‖
2
L21(Ω)
+ |v0r − iv0θ |

2
H1
1(Ω)
+ ‖v0r − iv0θ‖

2
L2−1(Ω)
) + ‖v0z ‖2L21(Ω) + |v

0
z |
2
H1
1(Ω)

= ‖v0r ‖2L21(Ω) + ‖v
0
θ‖

2
L21(Ω)
+ ‖v0z ‖2L21(Ω) + |v

0
r |
2
H1
1(Ω)
+ |v0θ |

2
H1
1(Ω)
+ ‖v0r ‖2L2−1(Ω) + ‖v

0
θ‖

2
L2−1(Ω)
+ |v0z |2H1

1(Ω)

= ‖v0‖2(L21(Ω))3 + ‖v
0
r ‖

2
V1
1 (Ω)
+ ‖v0θ‖

2
V1
1 (Ω)
+ |v0z |2H1

1(Ω)
,

which is the same as (5.18).
Similarly, for |k| = 1, we get

‖v±1‖2H1
(±1)(Ω)
=
1
2 ‖v
±1
r ± iv±1θ ‖

2
H1

(±2)(Ω)
+
1
2 ‖v
±1
r ∓ iv±1θ ‖

2
H1

(0)(Ω)
+ ‖v±1z ‖2H1

(±1)(Ω)

=
1
2 (‖v
±1
r ± iv±1θ ‖

2
L21(Ω)
+ ‖v±1r ∓ iv±1θ ‖

2
L21(Ω)
+ |v±1r ± iv±1θ |

2
H1
1(Ω)
+ |v±1r ∓ iv±1θ |

2
H1
1(Ω)
)

+ 2‖v±1r ± iv±1θ ‖
2
L2−1(Ω)
+ ‖v±1z ‖2L21(Ω) + |v

±1
z |

2
H1
1(Ω)
+ ‖v±1z ‖2L2−1(Ω)

= ‖v±1r ‖2L21(Ω) + ‖v
±1
θ ‖

2
L21(Ω)
+ |v±1r |2H1

1(Ω)
+ |v±1θ |

2
H1
1(Ω)

+ 2‖v±1r ± iv±1θ ‖
2
L2−1(Ω)
+ ‖v±1z ‖2L21(Ω) + ‖v

±1
z ‖

2
V1
1 (Ω)

= ‖v±1‖2(L21(Ω))3 + 2‖v
±1
r ± iv±1θ ‖

2
L2−1(Ω)
+ |v±1r |2H1

1(Ω)
+ |v±1θ |

2
H1
1(Ω)
+ ‖v±1z ‖2V1

1 (Ω)
,

which is the same as (5.20).
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Finally, for |k| ≥ 2 (noting that |k ± 1| ≥ 1), we get

‖vk‖2H1
(k)(Ω)
=
1
2 ‖v

k
r + ivkθ‖

2
H1

(k+1)(Ω)
+
1
2 ‖v

k
r − ivkθ‖

2
H1

(k−1)(Ω)
+ ‖vkz‖2H1

(k)(Ω)

=
1
2 (‖v

k
r + ivkθ‖

2
L21(Ω)
+ ‖vkr − ivkθ‖

2
L21(Ω)
+ |vkr + ivkθ|

2
H1
1(Ω)
+ |vkr − ivkθ|

2
H1
1(Ω)

+ (k + 1)2‖vkr + ivkθ‖
2
L2−1(Ω)
+ (k − 1)2‖vkr − ivkθ‖

2
L2−1(Ω)
) + ‖vkz‖2L21(Ω) + |v

k
z |
2
H1
1(Ω)
+ k2‖vkz‖2L2−1(Ω)

= ‖vkr ‖2L21(Ω) + ‖v
k
θ‖

2
L21(Ω)
+ ‖vkz‖2L21(Ω) + |v

k
r |
2
H1
1(Ω)
+ |vkθ|

2
H1
1(Ω)
+ |vkz |2H1

1(Ω)

+ (1 + k2)(‖vkr ‖2L2−1(Ω) + ‖v
k
θ‖

2
L2−1(Ω)
) + k2‖vkz‖2L2−1(Ω)

+ k(‖vkr + ivkθ‖
2
L2−1(Ω)
− ‖vkr − ivkθ‖

2
L2−1(Ω)
)

= ‖vk‖2(L21(Ω))3 + |v
k|2(H1

1(Ω))3
+ (1 + k2)(‖vkr ‖2L2−1(Ω) + ‖v

k
θ‖

2
L2−1(Ω)
)

+ k2‖vkz‖2L2−1(Ω) + 2ik∫
Ω

(vkθ ̄v
k
r − vkr ̄vkθ)

1
r
dr dz,

which is the same as (5.22).
In conclusion, theH1

(k)(Ω)-norms for the Fourier coefficient spaces thatwehave derived bydirectly rewrit-
ing the (H1(Ω̆))3-norm are the same as those obtained from relation (A.1). In addition to conveying struc-
tural understanding, relation (A.1) also facilitates the general study, by induction, for positive integer order
Sobolev spaces carried out in [5]. For our exposition, directly aimed at the Stokes problem, the method we
have chosen is straightforward to follow. The same remark can be made as to the difference between intro-
ducing the differential operators ∂ζ = 1

√2 (∂x − i∂y) and ∂ ̄ζ =
1
√2 (∂x + i∂y) in [5], and our choice of working

directly with ∂x and ∂y.
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